ST519/807: Mathematical Statistics

Bent Jgrgensen
University of Southern Denmark

November 22, 2014

Abstract

These are additional notes on the course material for ST519/807: Mathematical Statis-
tics. HMC refers to the textbook Hogg et al. (2013).

Key words: Asymptotic theory, consistency, Cramér-Rao inequality, efficiency, exponential
family, estimation, Fisher’s scoring method, Fisher information, identifiability, likelihood,
maximum likelihood, observed information, orthogonality, parameter, score function, statis-
tical model, statistical test, sufficiency.

Fisher (1922), under the heading "The Neglect of Theoretical Statistics", wrote: Several
reasons have contributed to the prolonged meglect into which the study of statistics, in its
theoretical aspects, has fallen. In spite of the immense amount of fruitful labour which has
been expended in its practical application, the basic principles of this organ of science are
still in a state of obscurity, and it cannot be denied that, during the recent rapid development
of practical methods, fundamental problems have been ignored and fundamental paradozes
left unresolved. Fisher then went on to introduce the main ingredients of likelihood theory,
which shaped much of mathematical statistics of the 20th Century, including concepts such
as statistical model, parameter, identifiability, estimation, consistency, likelihood, score func-
tion, mazximum likelihood, Fisher information, efficiency, and sufficiency. Here we review
the basic elements of likelihood theory in a contemporary setting.

Prerequisites: Sample space; probability distribution; discrete and continuous random vari-
ables; PMF and PDF; transformations; independent random variables; mean, variance, co-
variance and correlation.

Special distributions: Uniform; Bernoulli; binomial; Poisson; geometric; negative binomial;
gamma; chi-square; beta; normal; ¢-distribution; F-distribution.
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1 Stochastic convergence and the Central Limit Theorem

Setup: Let X denote a random variable (r.v.) and let {X,,} 2 ; denote a sequence of r.v.s.,
all defined on a suitable probability space (C, B, P) (sample space, o-algebra, probability
measure).

Definition: Convergence in probability. We say that
P
X, > Xasn— o0
(X, converges to X in probability) if

lim P(| X, —X|>¢)=0Ve >0
n—oo

Definition: Convergence in distribution. If F' is a distribution function (CDF) we say
that 5
X,—=F as n— o

(X, converges to F' in distribution) if
P(X,<z)— F(x) as n— oo forall z e C(F)

where C(F') denotes the set of continuity points of F. If X has distribution function F,
we also write
Xn L X as n— oo

Properties: As n — oo

L X, 2 X =aX, 5 ax
2. X, B X = g(X,) 5 g(X) if g is continuous
3. X, Lx=x,2x
4 T X, & X and Y, & Y then
P P
X,+Y, 5% X+Y and X,.Y, & XY (1.1)
Example: Let X be symmetric, i.e. —X ~ X, and define
X, = (—1)"X
Then
X, 2 x

(meaning that X, converges to the distribution of X), since Fx, = Fx for all n, but unless
X, is constant,
X, - X in probability



e However, we have the following properties

1. X, A c= X, Lt c
D P D
2. X, > Xand Y, - 0then X, +Y, > X
3. X, 2 X = g9(Xn) 2 g (X) if g is continuous
4. Slutsky’s Theorem: If X, B X and A, Lt a, B, £ b then

A, + B, X, L a+0bX

e Example: Let X,, and Y,, be two sequences such that X, 4 X and Y, EA X The following
examples show that we do not in general have a result similar to (1.1) for convergence in
distribution.

1. Suppose that X is symmetric (see above), and let X,, = X and Y;, = —X for all n.
Then
Xp+Y,=X-X=0
so clearly X,, 4+ Y,, converges i distribution to 0 as n — oo.

2. Now suppose that for each n, X, and Y,, are independent and identically distributed
with CDF F(z) = P(X < z) for all z. Now

D
XTL + YTL - FX1+Y1

where Fx, v, (z) = P (X1 4+ Y1 <) for all z, corresponding to the convolution of X3

and Y;. Hence, the assumption that X, B X and Y. B X is not enough to determine
the limiting distribution of X, + Y;,, which in fact depends on the sequence of joint
distribution of X,, and Y.

e Statistical setup:

Let X1, Xo,... be a sequence of i.i.d. variables. Assume

p=E(X;) and o?= Var(X;)

Define for n =1,2,...

n
_ 1
T, = ZXl- and X,, = ﬁTn
=1

Then

0_2

E(X,) =p Var(X,)=—

n



The (Weak) Law of Large Numbers (LLN) says

Xniu

Proof: Use Chebyshev’s inequality

P([Xn—n|ze) <

Convergence to the standard normal distribution
P(X, <z)— ®(x) as n— oo,

for all x € R, where

o(z) = (27r)1/2/ e 2t dt.

—0o0
Now we define
T = (X — 1)
for which
E(Z,) =0 Var(Z,) = o
The Central Limit Theorem (CLT) (see James, p. 265 or HMC p. 307) says
D 2
Z, = N(0,0%) as n— o0
Practical use B
Vn(X,, = p) ~N(0,0%) approx.
which implies
_ 0‘2
X, ~N <,u, ) approx.
n
Rule: The approximate normal distribution shares with X,, its mean and variance.
Example Bernoulli trials. Assume that the X; are i.i.d. Bernoulli variables,
Hence we use u as probability parameter, which is also the mean of X,
p=E(X;) and o?=Var(X;) = u(l — p)

Then "
T, = ZXi = #of 1s in a sample of n

i=1
In fact T, ~ Bi(n, u) (binomial distribution). Then, by the LLN

Xng,u



and by the CLT
D
Zyp = N(0, p(1 = p))

so that

T, ~ N(nu,nu(l —p)) approx.
Proofs based on the cumulant generating function. Let X; have cumulant generat-
ing function (CGF) k(s) = logE (e*X7). Note that X, has CGF n& (s/n), which converges
to su, which is the CGF of the constant u. This proves LLN. For /n (Yn — u) we have
the CGF nk (s//n) — suy/n = 20252 + O(n"1/2) which converges to N(0, o2).

Empirical variance: Define

SfL: z;
:?(ii; )

—ZXQ il X2 —a +u as n — 00

Now, by the LLN

and

o P
X2—>u2asn—>oo

so by the properties above

P
S2 5 0% asn — oo

and for that matter we also have
Sh Lt o asn— 0o
The A-method: If the sequence X,, satisfies
VX, — 0) 2 N(0,02) as n — oo
and if g : R — R is differentiable at 6 and §(#) # 0, then

Vilg (Xa) — g(0)] 2 N(0,023%(6)) as n — oo

If () = 0, the asymptotic distribution is degenerate at zero. Note that

9(Xn) ~N(g(0),0°§%(0)/n), approx.

so that g (X,,) has asymptotic mean g () and asymptotic variance o2g2(6)/n.



Proof (sketch): By Taylor-expansion to first order, we obtain
B 4(0)N(0, 0?)
= N(0,0%5%(0))
Definition: A sequence {X,} " is called bounded in probability if for any ¢ > 0 there
exists b. > 0 such that
P (| Xn| <b:) >1—¢ for n large enough.

Properties:

1. If X,, 2 X then {X,},2 is bounded in probability.
2. If {X,},2 is bounded in probability then
v, Lo=x,v, 50
The o and op notation. Recall that a, = o(b,) for b, — 0 as n — oo is defined by
(7%

— —0asn— o

br,
This notation is used in connection with Taylor-expansions, e.g.
9() = g(x) + 9(x)(y — =) + o (ly — z)
o in probability, denoted op, is defined by

Y,
Yn:0p(Xn)<:>—nﬁ>Oasn—>oo
Xn

Similarly O in probability, denoted Op, is defined by

Y, . . .
Y, =0p(X,) & X s bounded in probability.

Theorem: If {X,,} ~; is bounded in probability, and
Y, = op(Xy)

then ,
Y, —>0asn—

Proof of A-method revisited. Use Taylor expansion with remainder term
9(Xn) —g(0) =9(0) (Xn = 0) + op(|Xn — 0])
Then
\/ﬁ[g (Xn) —4g (9)] = 9(9)\/7;()(” - 9) + OP(\/H|X7L - 9|)
Since /n (X, —0) 2 N(0,02) we find that /n|X,, — 0| is bounded in probability. Hence
op(vn|X, —0]) L 0asn— oo

which implies the result.



2 The log likelihood function and its derivatives

2.1 Likelihood and log likelihood
e Likelihood and log likelihood: Let X3, Xs,..., X, be i.i.d. with either

— probability density function fy(x) (continuous case);

— probability mass function fy(x) (discrete case).

0 is a real parameter with domain © (nonempty interval). € is unknown, but we assume
that the true distribution of X, Xs, ..., X, corresponds to fp,(z) for some 0y € 2.

e Regularity conditions:

1. The parameter 6 is identifiable, i.e. if fp,(z) = fp,(x) for almost all z € R then
01 = 0.

The support of fg(z) is the same for all § € Q.
The true parameter value 6y belongs to the interior of €.

fo(x) is twice continuously differentiable with respect to 6 for almost all x.

BRI

% and [ can be interchanged (continuous case), or % and ) can be interchanged
(discrete case).

e The likelihood function is a stochastic function L,, : © — [0, 00) defined by
Ln(H) = f(Xl, Xoy .oty Xi; 9) for 6 € €,
where

f(SC]_,CCQ, s ,ﬂfn,e) = Hf@(:pl)
i=1

is the joint probability density/mass function for Xi, Xo, ..., X,,.
The log likelihood function is the stochastic function ¢, : 2 — R defined by

gn(e) = IOgLn(H) = logf(XlaX27-"aXn;9)

= > log fo(Xi).
=1

Strictly speaking, ¢,(0) takes the value —oo for L, () = 0, but this is not a problem,
because the region where f(x1,xo,...,z,;0) = 0 has probability zero.



Example - Bernoulli trials
fulz) = p*(1—p)'=" forz=0,1

bo(p) = Y log{u™i(1 —p) =¥}
=1

n
= > {Xilogpu+ (1—X)log(1—p)} 0<p<1
=1
I
I—p

= T,log + nlog(l — ).

e Parameter transformation.

Now suppose we work with v defined by 6 = g(1) instead of 6, assuming that g is 1-1.
Then the log likelihood for v is

=1

= fn(g(iﬁ))
so we just insert § = g(¢) in £ to obtain the new log likelihood.

Example - Bernoulli trials:

W
¢, then ¢ = log ﬁ

Let p= 117w,

1
l(¢Y) = Ty +nlog T

= T, —nlog(l+e¥)

e Data transformation. Consider a 1-1 transformation Y; = h(X;), which is used instead
of Xi'

Continuous case We assume now that h is differentiable. Then Y; has probability density
function

fe<h1<y>>ij”<y>,

so the new log likelihood is

lo(0) = £(0,Y1,Y2,...,Yy)
- izllog{w—lm))jjj(m

= Y lor( X0} + Y lox )
i=1 i=1 v

= 0(0; X1,X2,...,X,) + const.,




where "const." does not depend on 6. We use only ¢,(0) and /£, (0) and differences be-
tween log likelihood values (or likelihood ratios, see below) etc., so the constant may be
disregarded. Hence: Data transformation does not alter the likelihood.

The same conclusion is obtained in the discrete case, because the probability mass func-
tion of Y is fy(h~(y)) = fol), s0 £n(6) = £ (6).
Example - Bernoulli trials: Let Y; =1 — X;, then f,(y) = p'7¥(1 — p)¥ for y = 0, 1.

bap) = A1 =Yi)logp +Y;log(1 - )}

= Z{XZ log pu+ (1 — X;)log(1 — )}
i=1

For the next result we assume Regularity conditions 1. (@ identifiable) and 2. (the fp(x)
have common support).

Jensen’s inequality If ¢ is a strictly convex function, and X is a random variable with
E(]X]) < oo such that the distribution of X is not degenerate, then g(E(X)) < E[g(X)]. If
instead g is strictly concave, then g(E(X)) > E[g(X)].

Theorem

Py (Ln(0o) > Lp(#)) =1 as n— oo

for any fixed 6 # 6.
Proof (See HMC p. 322). The inequality L, (00) > L, () is equivalent to

. fo(Xi)
R,(0) = — 1 0
(0) n; 08 £ 5y <

Now by the Law of Large Numbers
P fo(Xi)
R,(0) — Eg {log }:m,
( ) 0 f90 (X’L)

say. We note that for 6 # 6y the distribution of fp(X;)/fa,(Xi) is not degenerate, because (in
the continuous case) we have

Jo(Xi) \ _ [ Jolx) 2)dx = x)dx =
iy} = ] Taoeie = [ ot =

and fg(x)/ fo,(x) = 1 almost surely would imply 6 = 6 by the identifiability of . The discrete
case is similar.

We hence apply Jensen’s inequality to the strictly convex function g(x) = —logx, which
yields
fo(Xi) fo(Xi)
m = By {log < log Eg =logl=0
’ foo(X5) * | foo (Xi)

10



Taking € = —m > 0, the Law of Large Numbers implies that
Py, (Rp(0) > 0) = Py, (Rn(0) >m+¢) < Py, (|[Rn(0) —m| >¢e) - 0asn— oo

Hence Py,{R,(0) < 0} — 1 as n — oo which implies the desired conclusion.

Since Ly, (0g) > L, (0) with high probability for n large, we conclude that L, (6) will tend to
have its maximum near 6y, the true value of §. This motivates the idea of maximum likelihood
estimation, to be introduced below.

2.2 The score function and the Fisher information function
We now assume that the function 0 — fy(x) is twice continuously differentiable.

e Define the score function (random function) by

U,(0) = Unp(0,X1,Xs,...,X,)
= En(e)

0
= gaelogfo()ﬁ)

This function is also known as the efficient score.
e Define the Fisher information function also called expected information by
1,(0) = Varg{U,(0)}

Note that I,,(6) is a function from €2 into [0, 00). I,,(#) is known as the intrinsic accuracy
in the physics literature.

e Properties (under regularity conditions):

1. Eg{U,(6)} = 0 (first Bartlett identity)
2. Varg{Un(0)} = Eo{U5(0)}
3. I,(0) = —Eg{l,(0)} = —Ep{U,(0)} (second Bartlett identity)

Example Bernoulli trials Let 6 = log ﬁ (actually 6 is the ¢ from above). Then

0,(0) = Tn0—nlog(l+ e

69
66
o{Un(0)} o(Tn) —ny g =0

because Eg(T},) = nu=n

11



69
In(g) = Varg <Tn — TLM)
= Varg(T})

= nu(l—p)

ef

n(l + e%)?

e Regularity conditions: (see Cox and Hinkley (1974), p.281) Assume that% and [ can
be interchanged (or % and ) in the discrete case). We know

/fg(:]:)d:n =1 for 6€Q

0
%/fe(fﬂ)dl‘:o

so that for 0 in the interior of €}

By the regularity condition,

0
/aefe(f)dm =
or
a1 dr =20
50 og fo(z) fo(x)dr =
because af( )
0 __pelo T
96 '8 D = Ty
Hence

Ea{é?elogfe( )}zo

The proof in the discrete case is similar. Now

n

Eg{U,(0)} = Ey

gelogfe( )]
= ZEO[ log fo(X )] =0 (2.1)

Hence, by the shortcut formula,

Varg [Ug] = Eq [Up ()] (2:2)

12



Differentiating (2.1) once more we obtain

2 2
0 = /;wlogfa(m)fo(ﬂfwr<§Hlogf9(3?>> Jo(z)dx

- /s;logfa(x)fo(m)der/(gelogfa(fc))Qfe(fﬁ)dﬂf

= {g;logfe(Xl)} + Eo { L‘?Q log fe(Xl)r}

Hence

I,(0) = En:\/aro [;bgfe(Xz')}
Z'TLI a 2
_ ;Ee{[elogfm)} }

= —Ey [ia(0)] (2:3)

Note that I,,(6) = ni(f), where i(0) = Eg{(%log fo(X:))?}. So the information of the
sample is n times the information of a single observation.

Example - Bernoulli trials

I,(0) = Varg{U,(0)}

= Varg{Tn}
= nu(l—p)
Maximum information for y = %
n(l) = —n——7ps = —nu(l -
0 (0) AT e np(l = p)

L,(0) = —Eo{0n(0)}.

13



2.3 Observed information
e Definition: The observed information for 6 (a stochastic function) is defined by
By (2.3) we have

Moreover, since

we have, by the Law of Large Numbers

2
%JH(Q) L i(0) = —E {8892 log f&(Xi)} :

e Reparametrization Let § = g(1) and assume that g 1-1 and differentiable, then v has
observed information .J,,(¢), where

~ ~ o2

T0) = () =~ sl
0 . 06
_ —aw{fnw»%}
. 2 - 2
_ i) (SZ) —en<g<w>>§£
Hence
- 90\ 2 026
Tul) = Ju(g()) <a¢> - Ua) s
and

1) = L(g()) (23)

because Eg{U,(0)} = 0.
e Example - Bernoulli trials. Find J,(u) for 6 = log ﬁ = g(p). Recall that U, (0) =

0

0
Tn — it and Jp(0) = n(lfT)Z =nu(l — p). Hence

0 = g(p)=logp—log(1l— p)

w1, 1 1
op po L—p o p(l—p)

6 _ -l

o2 (1 —p)?

. 1 20— 1
(M) ,LL( M)Mg(l _ M)Q ( M)M2(1 _ M)2



and

which now has minimum for p = %

Example - Uniform distribution. Consider the uniform distribution on (0, 6) with
PDF

f9 (a:) = (971 1(079) (.T,')

This is an example, where the regularity conditions are not satisfied, because the support
depends on #. This means that although

55 [ otz =0,

the left-hand side

) o (%
0
0
_ -1 ~ p—1
= 0 +/0 809 dx

9
01—/ 0 2dx
0

contains the extra term 0! due to an application of the chain rule. Let X(n) = max {X1,..., X}
The likelihood is

=

La(0) = (0711 (0,0)(X3)]

1
“"L0,0)(X(ny)

Note that Py (X(n) < 0) =1, so that L, (#) = 67" for 6 > X(n)- The likelihood is hence
decreasing for 6§ > X,,), and zero to the left of X, and the maximum likelihood estimator

>

is En = X(n)- Let us now go through the standard calculations, and see what goes wrong,
if anything. The log likelihood is

€n(0) = —mlogd for 0 > X,

The score function is
Un(0) = —n/0 for 0 > X,

with mean
Eg (Un(0)) = —n/0

which is not zero, so the first Bartlett identity is not satisfied. Moreover,

I, (0) = Varg (U,(0)) =0

15



which is disturbing, because zero Fisher information in principle implies that the sample
contains no information about the parameter 6. The observed information, however, is

Jn (0) = —n /6>

which is negative, and Ey (J(6)) = —n/6?, so the second Bartlett identity also is not
satisfied. The good news is that the maximum likelihood estimator 6, = X, is a reason-

ably good estimate for 6. Note, however, that @n does not satisfy the likelihood equation
Un(0) = 0, and neither I, (f) nor J, (6) seem to express the information in the sample
about 6 in any reasonable way.

2.4 The Cramér-Rao inequality

Theorem: If 6,, = 0,(X1, Xo,...,X,) is an unbiased estimator of 6, then
Varg(0,) > I, ().

Proof: (See Silvey, 1975 p. 36) Let fy(x) = f(x1, 22, .. .,2n;0). By unbiasedness, Eg(6,,) =

0, or
[i@ o)z =0

Differentiating with respect to 6 and interchanging % and [ (given regularity conditions) we

have 9
/én(m)aefg(m)dm =1

or

Hence

1 = Ey(0,U.(0))
= Covy(0,,Un(0)),

because Eg {U,(#)} = 0. By the Cauchy-Schwarz inequality we obtain
1 = Cov3(On, Un(0)) < Varg(0,,)Varg(U,(6)).

Since Varg(U,(0)) = I,,(0), the inequality follows.

The quantity ]n 1(9) is called the Cramér-Rao Lower Bound. An unbiased estimator 0,
with Varg(f,) = I;'(6) is called an efficient estimator. If f,, is unbiased, but not necessarily
efficient, we call

Effg(60,) = ==

16



the efficiency of 0,,. An efficient estimator is hence the same as an estimator with efficiency 1
for all 6 If the estimator is biased, the bias should be taken into account (see Cox and Hinkley
(1974), p. 254), by defining the mean square error (MSE) as follows

. . 2
MSEy(0,,) = E [@n - 9) } .
Example - Poisson distribution Po(#) with PMF

fo(x) = ;679 x=0,1,2,...
The log likelihood
0n(0) =) Xilogh —nb — ) " log (X;!)
i=1 i=1

The score function

Un(0) =Y X0~ —n
=1

The Fisher information 0
n
1,(0) = Varyg(U,(0)) = ol =

The maximum likelihood estimator defined by Un(é) =0, is 0, = X,,, and since Ey (Xn) =0,

0,, is unbiased. Its variance is

|3

- 1 1
Vary(6,,) = 50 =7 0

so the estimator is efficient (the Cramér-Rao lower bound is attained).
Example - Geometric distribution has PMF

fo(z) =0(1—0)7, z=0,1,... 0<f<1.
Define 6; (for n = 1) by

~ 1 for =0
0 for >0

Then 6; is unbiased,

Ep(61) = 10 + ioe(l —0)* =9

r=1

and I 5
Eg(07) = Eq(01) =0

Hence Varg(0) = 6 — 6% = 6(1 — #). The log likelihood is

01(0) =log 6 + X7 log(1l — 0)

17



The score function is
Uh1(0) =01 — X1/(1—-0)
The Fisher information is
1-0 1
T 2102 0°1-0)

I,(8) = Varg(U1(6))

Hence, by the Cramér-Rao inequality

~ 1
Varg(01) > L0

or

0(1—0)>6*1-6)
which is indeed satisfied for 0 < 6 < 1. The efficiency of 8y is

- IT'e)  6*(1-0)
B0 = @) ~ 001 0)

Hence the efficiency may be anywhere between 0 and 1, depending on the value of 6. Similar
conclusions may be reached for n > 1 as well.

Note: In the course ST802: Estimating Functions we learn about estimating functions,
which are random functions that correspond to unbiased estimating equations, which in turn
define a large variety of estimators, including maximum likelihood estimators and unbiased
estimators. We note that not all maximum likelihood estimators are unbiased, and not all
unbiased estimators are maximum likelihood estimators. One of the main topics of ST802 is to
show that maximum likelihood estimators are optimal, in a suitable sense, among all estimating
function estimators.

3 Asymptotic likelihood theory

3.1 Asymptotic normality of the score function

Main result:

Uj/(g) B N(0,i(6)) as n — oo, (3.1)

i(6) = By { [{fg log fd)ﬁ)} 2} .

where

We may also write, for n large
Un(0) ~ N(0,ni(6)) = N(0, I,,(8)) approx.

Proof: Note that

n

0
Un(0) = %logfg(Xi).
i=1

18



Since this is a sum of i.i.d. random variables (for any given #), and since

Eg {886 log fG(Xi)] =0

and
Va1 log fo(X0)} = i(9)

the Central Limit Theorem gives

Un(8)

\/ﬁ{ —o} B N(0,i(6)),

as desired. This result will be used in the next section.

3.2 The maximum likelihood estimator

The maximum likelihood estimator 0,, is defined as the value of 0 that maximizes l,(0) in Q,
i.e. satisfies
0o(0,) > 0,(0)  forany 6 in Q.
In most cases of interest én is a local maximum in the interior of €2, and satisfies En(@n) =0
that is X
Un(gn) =0,

A~

which we call the likelihood equation. Often it is the random variable J,,(6,) rather than
the random function J,,(0) that is called the observed information. Note that if 6, is a local
maximum we have Jn(@n) > (. There may be problems with 9n on the boundary of €2, but this
is more common in the discrete case. Note that if 6 = g(1), where g is 1-1 and differentiable,
the likelihood equation becomes

~ o 00
Un(g(%))% =0
so that ¢, = g~ (6,).
Example - Bernoulli trials Let 6 = log ﬁ, then the score function is given by

69
Un(0) =T, — nma
which gives the likelihood equation
PO
Tnfn=2n =130

1feg we obtain fi,, = X,. f T,, =0 or T), = n, the
likelihood equation Uy, (6) = 0 has no solution. However, fi,, = X,, is valid even if T}, = 0 or n,
and maximizes the likelihood.

We shall now show that the maximum likelihood estimator has the following two properties:

with solution 6, = log % Since p =
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1. 0, is consistent, that is

0, L hasn— 0,
where £ denotes convergence in probability under FPy. By definition this means
Ve>0 Py(|0,—0]>€¢)—0 as n— .

We also say that 0, is asymptotically unbiased, although this terminology is somewhat
imprecise.

2. 0, is asymptotically normal and asymptotically efficient,

A D 1
Since i(0) = I,,(6)/n we have
Varg(0,) = I, (0), approx.

which is the basis for the claim of asymptotic efficiency.

These properties show that 0, is essentially the best available estimator for # when the
sample size is large. The performance of 0, is generally good also for small samples, and 0,
is widely used, although often we need to investigate the behavior of 0,, for small samples via
simulation.

3.3 Exponential families

Before proving properties 1. and 2. in the general case, we consider exponential families, where
the proof of these properties is much simpler. Let X have probability density /mass function

fo(x) = a(a:)eex_”(e), z€eR
where 6 is the canonical parameter with domain €.

Theorem Ey(X) = #(0) and Varg(X) = &(6).
Proof (Continuous case). Since [ fp(z)dx =1 we have

M) = ") = /a(ﬂj)eezdl‘
It may be shown that in this case [ and % can be interchanged, so

M(9) = / ra(2)e? da

and

M(0) = /x2a(ﬂs)e€‘rd$.
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Hence

%EZ; = /:Ba(:n)eex_“(e)dx = Ey¢(X)
and .
AJZEZ; = /a;%(:n)eem_“(e)dx = E¢(X?)
Since k() = log M (0), we find .
_ M(0) _
£(0) = W = Ey(X)
and
.. M(O)M () — M?(6
o) = HOMO 0
_ ey @)
S M(O) | M(9)
= Eo(X?) - E§(X)
= Vary(X)

Now look at the log likelihood for X7, Xo,..., X, i.i.d.
n
0n(0) =) loga(X;) + 0T, — nk(6),
i=1
and score function

The likelihood equation is

1 )

T #(0)
or

X, = k(0)
and

I,(0) = Varg(Un(9))
= Var@(Tn)
= nk(0)

Note that —J,,(0) = £,(0) = —ni(6), confirming that I,,(6) = Eg(J,(0)). Now define 7(6) =
/(0). Since i(0) = Varg(X) > 0 we obtain

7(6) = k(0) > 0,
so that 7 is strictly increasing, and the solution to

X, =71(0)
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is unique, if it exists, and is

A~

0, =11 (Xn)

where 77! is increasing and differentiable.

We now look at the two asymptotic properties of 9n

1. Consistency. By the Law of Large Numbers

X, & Eg(X1)=7(0) as n— o0

1

and since 77 is continuous,

O, =7 1X,) =771 7(0) =60 as n— oo
Hence 0,, is consistent. Before continuing, we recall the A-method. Assume that
Vn(X, — ) A N(0,0?) as n — oo
Let v,, = g(X,,) where ¢ is differentiable. Then

Vi(9(Xa) — g(1) 2 N(0,6%5 (1), as n — oo

which follows from the expansion

9(Xn) = g(1)) = §(1) (Xn — p).
2. Efficiency and asymptotic normality. By the CLT we have
VX, — 7(0)) 2 N(0,i(0)) as n— oo

because #(f) = Varg(X7). Since 77! is differentiable, with derivative

ETfl(x) = - 1 = 1

Oz T (z) KT H(2))

we obtain

VA (X)) 7N (7(0) S N <07 -{%(9)2)

- s(odg) (055).

and in particular @n is asymptotically efficient. We now pass from the canonical parameter
0 to a general parameter ¢ defined by 0 = g(1) where g is 1-1 and differentiable. Then,
0n = g(1,,). 1, is consistent, because g is continuous. The expected information for v is

(n=1
W) = i) (33)

= i(g(¥)g* (V).
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By the A-method applied to g=1(6,,) we obtain

15\ _ —1 D 1
Vit 0 =70 B N (0,

1
= N(O’i(w)> as n — 0o,

~ D 1

Hence we have asymptotic normality and efficiency of zzjn Let us apply this to the para-
meter

SO

) as 1n — o0

Since Eg(X) = 7(0), [, is unbiased. Now 7(0) = k(6), so

o 2N (0. 2O
Vi, = p) =N (0, 70) >
= N(0,k(f)) as n—
1

Since Varg(fi,,) = -#(6), the Cramér-Rao lower bound is attained.

Example - Normal (X; ~ N(y, 1), i.i.d.) Look at the PDF
fulz) = (2m)7H2emalm

1 1
= (2m) Y2exp (—2{E2 - §u2 + :L',LL)

1
= (27’[‘)_1/26_%3:2 exp <:Eu — 2,u2>

We can identify this as a natural exponential family with 8 = p and

k(f) = %02
kO) = 0=u

R0) = 1

bap) = —5log(2m) = 5 > (X — p)?

= const. + Tpu — g,u

Un(p) = > (Xi—p)=T,—np
=1

. 1 >
fro = —Tp=Xn~N(u1l/n)

In(p) = Jn(p) = Var,(Un(p)) =n

3

.
—
=
~
|
—_
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so the asymptotic distribution
. D
\/E(Mn - M) - N(()? 1)

is exact for all n = 1,2,.... Note that fi,, is unbiased, i.e. E, (f,) = p and Var, (1,,) = 1/1, (1)
(CR lower bound is attained).

Example - Exponential distribution, parameter 6

folx) =07 >0

n

In(e) = ?

~ n
0, = T

Example - Poisson Po(0)

Example - Binomial distribution
p’n = XTL
. D
Vi, — 1) ZNO, (1= 1)) as n— o0
Example - Geometric distribution with PMF

fo(x) =0(1—0)" for x =1,2,...

has log likelihood, score function etc.

n(0) = nlogf+ Y X;log(l—0)
=1

n T
Un0) = G125
N n
On = T, +n
, 1
0 = ea-g



3.4 Consistency of the maximum likelihood estimator

In the following we let 6y denote the true value of 6, and we assume that the distributions fp(x)
have common support.

Recall that we have shown the following theorem above.

Theorem

Py, (br(60) > 0,(0)) =1 as n— oo

for any fixed 6 # 6.

Theorem Consistency (Lehmann (1998) p. 413) With probability tending to 1 as
n — oo, the likelihood equation has a solution @n which is consistent.

Proof Let § > 0 be such that 8y — 0 and 6y + § are both in €2, and define

Ap =A{x: £,(00) > £n(0g— ) and £,(0) > £,(0p +0)}.

Then by the previous theorem we may conclude that Py,(A,) — 1 as n — oco. In fact, first note
that for events A and B, we have

P(A°NB)=1—-P(AUB) >1-P(A)— P(B)
This implies that

Poy(An) = 1= Py, (ln(f0) < Ln(bo — 0)) — Py, (€n(bo) < £n(o +9))

— lasn — oo.

~ Hence, for any = € A, there exists a 0n(6) € (Bg — 8,00 + 6) such that £, (0,,(5)) = 0 and
0,,(6) is a local maximum for £, (0). Hence

Py, (|9n(5) — 0| < 5) > Py (Ay) — 1 as n— oc.

We finally need to determine a sequence which does not depend on 4. Let 0,, be the root
closest to 0y. Then, for any & >0

P90<|én—00]<5)—>1 as n — 00

which proves the consistency.

We note that 6, is not necessarily the maximum likelihood estimator, but we shall work
with 6,, from now on. However, 0,, is in fact a stationary point of £,,.

Corollary: If 0, is unique, then it is consistent. Provided that 6, is a solution to the
likelihood equation, this follows from the above proof.

3.5 Efficiency and asymptotic normality

Now assume that there exists a function M (x) such that

3
‘810gf0($)

50 < M(xz) forall =,
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and Eg(M (X)) < co. Then
Vn(fn — 00) 2 N(0,1/i(6)) as n — oo

Proof: Expand /,, (9n) around 6

() = £a(00) + (B~ B0)En(B0) + 5 (B — 00)77 (6.

where 6% lies between 6y and 6,,. The left-hand side is zero, so

0 = Un(B) — (B —00)Jn(60) + 5 (B — 007 F1(6})

(0 — 00) 7 (07,)

= Un(00) = (B — 00) | Jal60)

Hence

n_1/2Un(00)

VB, — 6p) = L 7,(60) — 1(0, — 60) L7 (67)

We now use the following facts:
1. n=Y2U,(6y) A N(0,i(6g)) as n — oo (shown above).
2. %Jn(eo) il i(6p) as n — oo by the Law of Large Numbers.
3. 1'7(6;) is bounded in probability
1~ &
> = log for (X:)

- 3
ni 90

1...
_ o*
67

IN

%Z M(X;) 5 By [M(X,)].
=1

Hence /n(f, — 0) has the same asymptotic distribution as
U, (0o)
vni(0o)

We have used that 9n Lt 0y so that 9n — by Lt 0, which is hence bounded in probability.

Note also that Var( U, (o) ) _ ni(fo) _ 1
Jmi(6o) ni*(6o)  i(0o)

which is  N(0,1/i(6o))
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3.6 The Weibull distribution
Consider the Weibull distribution with PDF
fo(z) = 02 te=" for z > 0, (3.2)

where 6 > 0 is a parameter. It is easy to show that (3.2) is a PDF, by the substitution z = 2.

Let T,, = Y ;" , log X;, where X1,..., X, are i.i.d. from the Weibull distribution. Then we may
write the log likelihood as follows:

l,(0) =nlogd + (0 — 1)T,, — Z€QIOgXi‘
i—1

The score function is

_n - N 0log X;
Un(0) = 2 + T, — ;1 (log X;) e” "8
and the observed information is
n - 2 0Olog X;
Jn(0) = 7z + E (log X;)"e” 8 > () (3.3)

i=1

so the log likelihood is concave. Hence there is at most one root of the likelihood equation, and
this root is the maximum likelihood estimator. First note that U,(#) goes to co as 6 goes to
zero. Also, note that we may write U, (0) as follows:

n n n . ‘
Un(0) = 2 + ZlogXi - Z (log X;) e/ 108 X
i=1 i=1

_n . ) 0log X;
= 9+;logX,<1—e & )

In the special case where X; = 1 for all 4, the last term is zero and we obtain U, (0) = 4, which
goes to 0 as 0 goes to co. So in this case (which has probability zero) the likelihood equation
has no root and the maximum likelihood estimate is § = oo, which is outside of the parameter
domain for #. Except for this special case, we observe that the terms log X; (1 — eflog Xi) are all
negative, because log X; and 1 — ?1°6Xi have opposite signs. In this case, the asymptotic value
of Uy (0) as 6 goes to oo is either —oo (if at least one X; > 1) or goes to a negative constant (if
all X; <1 and at least one X; < 1). Hence, with probability 1, there is a unique root /H\n of the
likelihood equation Uy, (#) = 0.

Now let us find the unit Fisher information. Using (3.3) we find using the substitution y = z°
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that

= 19781,

where v = 0.577221 ... is Euler’s constant, using for example Maple. The maximum likelihood
estimator 6,, is consistent and asymptotically normal and efficient,

NG (@n - e) DN(0,1/i(0)).

3.7 Location models

Example: Information for a location family (HMC p. 329-330). Consider the location model
with PDF
fo(x) = f(x —0) for x € R,

where 6 € R and f is a given PDF. It is useful to let h(z) = —log f(z), or f(z) = e "*). For a
random sample X1,..., X, from the location model, we obtain the log likelihood

0n(0) = = h(X; —0).
i=1
The score function is .
Un(0) = h(X; - 0)
i=1

where dots denote derivatives, and the observed information is
Tn(0) = h(X; - 0).
i=1

Hence, we note that if A is strictly convex, so that h(z) > 0 for all z € R, we obtain .J,,(6) > 0,
and so the log likelihood is strictly concave, and there is at most one root of the likelihood
equation. In general, h may of course not be strictly convex, in which case that discussion of
maximum likelihood is more involved.

We note that the first Bartlett identity takes the form

Eo(h(X1 —0)) = / h h(z — 0)e =0 dg

= / h(z)e ™2 dz = 0,
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where we have used the substitution z = z — 6. Note that the equation is trivially satisfied if h
is an even function (h(z) = h(—x)) and h hence an odd function (h(z) = —h(—=x)). Now let us
find the unit Fisher information (also called the Intrinsic Accuracy)

i(0) = Ep(h(X1-0))
= / h(z —0)e =9 gy

= / h(z)e @) da.
An alternative expression, obtained from the second Bartlett identity, is
i(0) = Eg(h*(X1—0))
= / B2 (z — 0)e "M@=0) gy

—00
S .
= / R (z)e "?) dz.
—0oQ
As an example we consider the Cauchy distribution with
1
o) = ey
for which
h(z) = log 7 + log(1 + z?)
and 5
. x
h =
@) =12
In this case, h is not convex. In fact
() 2 (1—a?)
x) = ,
(1 +a2)?

which changes sign for x = +1.
Using for example Maple we obtain

o0 422 1
i(@):/ P
70077(14‘22) 2

The maximum likelihood estimator 5n is consistent and asymptotically normal and efficient, but
the likelihood equation Uy, () = 0 may have other roots than 6,,.
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4 Vector parameters

4.1 The score vector and the Fisher information matrix
Let X1, Xo,..., X, be i.i.d. random variables with probability density/mass function fg(z), and
0 = (01,02,...,0,)" € Q, where Q is a region in RP.
Example - X; ~ Ga(0, \), with density function
fo(z) = =2 1™ forz >0 where 6= (0,\)" € R2.

The likelihood function L, :  — [0,00) is now a random function of vector argument defined
by

L(6) = L,(0) = f[fg(xi) for @ € Q
=1

The log likelihood function £, : 2 — R is a random function of vector argument defined by
0(6) = £,(0) =) log fo(X;) for 0 € Q
i=1

The score vector U : ) — RP is a random vector function

a0

1

U9) = gg =1 : px 1 vector.
Jol4
50,

We sometimes use the gradient notation
U(6) = Vyl(0)

Here and in the following, we often drop the subscript n, and instead U;(6) will denote the jth
component of U() etc. The score vector satisfies the Bartlett identity

Eq{U(6)} =0,
that is Eg{%} =0forj=1,...,p.
Expected Information Matrix Definition
I(6) = Varg{U(0)} pxp matrix
= Eo{UB)UT(0)}
Iix(0) = Cove{U;(0),Ur(0)}
Eo{U;(0)Ur(6)}

Reparametrization 8 = g(v), g : 1-1 differentiable gives the score vector

_ T
T(ap) = %‘Zp )
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and expected information matrix

- 00" 00
I = —1TJ(0)—
) = 55 105 =
The observed Information Matrix
2
J@O) = —aeaaiT p X p matrix
%0
J (0 —
#(6) 00;00;

Second Bartlett identity
1(0) = Eg{J(0)}

4.2 Cramér-Rao inequality (generalized)
Define I'%(0) = {I~%(0)};1. If 6, = 0,,(X1, Xa,..., X,,) is an unbiased estimator of 0y, i.e.
Ee{én} = 017

then )
Varg{0,} > I''(9)

See Cox and Hinkley (1974) p. 256. The proof is based on a generalized version of the Cauchy-
Schwarz inequality.
Asymptotic Normality of the score function Recall that the score function

"0
U(o) = — 1 X;
(6) ; 59 108 fo(Xi)
is a sum of i.i.d. variables with mean zero,

Eo {;0 IngH(Xi)} =0

and variance equal to the unit Fisher information matrix

Varg {8(?910% fO(Xi)} = i(0).

Recall that the total Fisher information matrix is I(6) = ni(0).
By the Multivariate Central Limit Theorem

U(9) 2 N,(0,i(6))

Si-
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Note that since

1 1
—J(0) =~
SO =

n
1=

62
———=1lo X;
then by the Law of Large Numbers

1 0? :
230 2 g { o fo(x0) | = i6)

Maximum Likelihood Estimate (MLE) The MLE ,, € Q is defined by L(8,) > L(6)
for any 0 € Q). In general 8,, satisfies the likelihood equation

U)=0
or the p equations with p unknowns,

Ui1(0) =0

Up(0) =0

See picture of likelihood contours.

4.3 Consistency and asymptotic normality of the maximum likelihood esti-
mator
Consistency (6 = true value)
én Lt Oy as n—
that is A
Py, (HOn—OOH >e> —0 as n—oo Ve>0

Asymptotic normality, asymptotic efficiency

Vi@, —00) BN, (0,i71(0)) as n— oo

By the Cramér-Rao inequality, s71(6) is the "best" obtainable variance for an unbiased esti-
mator; hence 8, is asymptotically efficient (see ST802 notes).
Proof (sketch): From Lehmann (1998), p. 429-434. Recall from the one-parameter case
that for any 6 # 6y
Py, (L (60) > Lp(0)) — 1 as n — oo.

Let Q. denote the sphere, center 8y, radius a > 0 for a small, there is high probability that
00) < £(0y) for 0 € Qq,

and hence ¢(0) has a local maximum in the interior of @,, and this maximum satisfies the

likelihood equation U(8,) = 0. Hence we have shown that with probability tending to 1 there
exists a root of U(0@) = 0 near 6, proving consistency.
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Asymptotic normality: Expand U(@) around 6y,
U(8,) ~ U(6o) — I (6;,)(8 — 69)
where 07 is on the line segment joining 8 and 8,,. Now U(8,,) = 0, so

1
Vib, - o) = { L300} Ui

We have 0,, — 60, so 8% — 6y and hence 1J(6;,) — i(60). By the asymptotic normality of

ﬁ (6p) we obtain

i‘l(é’o)\/lﬁU(Ho) — Np(0,41(80)i(B0)i ™" (80)) = N, (0,5 " (60)).
Hence A
V@, —00) ZN(0,i1(8p) as n— oo.

As before, we interpret this as saying that, for n large, we have
én ~ Np(007 1_1(00)>a

where I(6g) = ni(6y) is the total Fisher information matrix.
Example - Normal distribution (HMC p. 354) X; ~ N(u,7), 0 = (u,7) € Rx Ry
(note that HMC use o as parameter, whereas we use 7 = ¢2). The log likelihood for a sample

of size n is
n

_on n 1 ' 9
00) = —§log (27) — Elogr ~ 5 ;(Xz — )

Straightforward calculation give

=1
U2(0) = —5-+ D_(Xi = n)?/(27%)
i=1
and also
J(0) = < g i (Xi— p)/7? >
S (X —p)/m? (X = )P /T o

We hence obtain

and



The maximum likelihood estimates are

N S A 1 _
fin = Xn and Ty = Z;m — X)?
1=

The Cramér-Rao lower bound for x is 7/n, which is attained by fi,. 75, is not unbiased, but

1 _
S2 = — > (X - X)),
=1

is unbiased, Ey(S2) = 7. The variance of S? is %, which is bigger than the Cramér-Rao lower

bound %, but for n large, the difference is small. By the asymptotic normality of 0.,
)  (B\| D T 0
) -0 2 (oG o))
The exact distributions of f,, and 7,, are
N ~ T o
fo, ~ N(u,7/n) and 7, ~ X (n—1)

Example gamma distribution (continued) - X; ~ Ga(f, \), with density function

9)\
fo(z) = mm/\_le_ax forz >0 where 6= (0,\)" € R2.

Log likelihood
(6, 2) = nAlogf —nlogT(A) + (A= 1)> log X; — 0> X,
=1 =1

In order to handle the derivative of the gamma function, we introduce the digamma function

Y = S10sT ()

and the trigamma function
2

d
Y1 (A) = W]og L(A)

Now the components of the score function are

and
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The likelihood equations are hence equivalent to

A _
7 = Xn (4.1)
P (A) —log\ = L, —logX,, (4.2)

where L,, denotes the average of log X;. The observed information matrix is

¥4
JO,N)=n| 6 }
0 { KIS,
This matrix is non-random, and so I(6,\) = J(0,\), and since I(0, \) is positive-definite, it

follows that the log likelihood is strictly concave. In particular, it follows that v, (A) > 0, and
furthermore, the equation (4.2) has a unique solution.

4.4 Parameter orthogonality

Consider a statistical model parametrized by the parameter 8 = (61, GQ)T. In case the Fisher
information matrix is diagonal,

I IC)) 0
1) = [ 10 I32(0) }

the parameters 61 and 05 are said to be orthogonal. In this case the inverse Fisher information

matrix is also diagonal,
_ 1/1,1(0) 0 }
146) = .
(9) [ 0 1/122(0)

It follows that the maximum likelihood estimators 51 and 52 are asymptotically independent,
with asymptotic normal distributions

0; <~ N(6;,1/1;;(6))- (4.3)

Here we note that (4.3) implies, for example, that the asymptotic distribution of 51 is the same,
whether or not the second parameter ¢ is considered known or not. This follows because 111(0)
is tile Fisher information for #; when 65 is known, making the asymptotic distribution of 61 to
be 91 ".\/N(Hl, 1/]11(0))

The notion of parameter orthogonality may be generalized in various ways. If 8 = (61,. .., Gp)T
consists of p parameters, we say that 01,...,0, are orthogonal parameters if the Fisher infor-
mation matrix for @ is diagonal. If @ = (61,63)" is a p-dimensional parameter consisting of two
components 61 (¢g-dim) and 65 ((p—q)-dim), then the parameter vectors 8; and 0, are said to be
orthogonal if the Fisher information matrix I(6), when partitioned in blocks corresponding to
01 and 04, is block diagonal. In these cases, the consequences are roughly speaking the same as
above, namely that the components of @ are asymptotically independent, and that the asymp-
totic distribution of one component does not depend on whether or not the other component or
the remaining elements are known or not.

A further option is to use the observed information matrix J (@) to define orthogonality.
We can hence talk about the parameters 1 and 6y being observed orthogomnal. If we want
to distinguish the original concept of orthogonality, we talk about 67 and 6y being expected
orthogonal parameters.
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4.5 Exponential dispersion models
Consider the distribution with PDF or PMF defined by
F(@;0,\) = a(a; \)e0=r0)] (4.4)

Note that (4.4) is a natural exponential family for each value of A\. The gamma and normal
distributions are of this form. In particular we find that the mean and variance are

E(X) = £(6) (4.5)
Var(X) = X '&(6)

Taking n = 1 in the calculations, we obtain

00,\) = loga(X;\)+ A[X0— k()]
= c(X5N)+A[X0—k(0)],

say. The components of the score function are

Ur(0,)) = A[X —&(0)]
Us(0,)) = &(X3N) + X0 — k()

where a dot denotes derivative with respect to A. Note that (4.5) follows from the first Bartlett
identity, and that (4.6) follows from the second Bartlett identity.
The observed information matrix is

[OAO) - [X k()]
son=| 7% Bl |

Since X — £(6) has mean zero, we obtain the following Fisher information matrix

[ AE(9) 0
1(6,%) = [ 0 —Egu [6(X: \) } |

This is an example where 6 and A are orthogonal parameters, meaning that the Fisher informa-
tion matrix is diagonal.

4.6 Linear regression

Let Y7,...,Y, be independent and assume that
Y ~N(a+ B, 7) fori=1,...,n,
where x1,...,x, are constants satisfying
T+ +xn, =0. (4.7)

This is the standard linear regression model with x being centered, so that T = 0. Let us go
through the likelihood calculations for this model.
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The log likelihood for the three parameters is

n

(o, B,7) = — 5 log(2mr) — o= 3" (¥i— o~ i)

i=1
We now introduce the notation

Sy = Yit-+Y,

n
Sy = Z x;Y;
i—1

n
§ 2
S.]}.Z‘ - x,i .
=1

We assume that S, > 0, in other words that not all z; are identical.
The first component of the score function is

or _EZ(Y;_OZ—B;UZ):%(SY—RO(),

da T
i=1
where we have used (4.7). The solution to the first likelihood equation is hence
a=Y, (4.8)

with distribution N(a, 7/n).
The next component of the score function is

SzY - BSM:) ’

~

o 1 1
%:;Zl‘i(n—a—ﬁxi):*
i=1

where once again we have used (4.7). The solution to the second likelihood equation is

S.Z’Y

=g

with distribution N(3,7/Szz)-
The third component of the score function is

or n 1 — 2
or = o tam 2 (ima-m)
n 1 2 2

where we have used (4.7) once more. Inserting the solutions (4.8) and (4.9), the solution to the
third likelihood equation is

n

i B e n )

=1
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We know from the theory of linear models that an unbiased estimator may be obtained as

follows: .

?:n12Z(YE—a—B$i>2-

1=

with distribution

~ T 2
~ —2
T~ X (n=2),

which has mean 7 (being unbiased) and variance

272

Var (7) = —

(4.10)

We shall now show that the Fisher information matrix is diagonal, as follows:

v g
I(Oé,ﬁ,T) = 0 S;EE 0 )
0 O #

making the three parameters orthogonal. The calculation of the entries of I(a,3,7) goes as
follows. The first two diagonal elements of the second derivative matrix are

Pt n
da? T
O Sw
opr T
which immediately give the first two diagonal elements of I (a, 8, 7). The third diagonal element
is
82€ n 1 -~ 2
LS Wima- . (4.11)
i=1

Since
B[ —a-6m)?] =,

it follows that the mean of (4.11) is

p(P\_n nt_ n
or2) 272 3 272’
giving the third diagonal element of I(«,3,7). We also need to show that the three mixed
derivatives have mean zero. First note that

0%
=0.
dadfs
Also note that the two mixed derivatives with respect to 7 are
020 1
- (Sy —
OT0x T2 (Sy = na)
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and 02
1

both of which have mean zero. This completes the calculation of the Fisher information matrix.
The inverse Fisher information matrix is now

0
IY(a,B,7) = i

z 2

0
0

S O3
o

272
n

It follows from the calculations above that & and B are both minimum variance unbiased estima-

tors. As regards the unbiased estimator 7, its variance (4.10) does not achieve the Cramér-Rao

lower bound, but since 7T is a function of the sufficient statistic (Sy, Sy, Syy)T, it is a minimum

variance unbiased estimator (see the next section).

4.7 Exercises

1. Find the Fisher information matrix in the regression model when T is not assumed to be
ZEro.

2. Consider the unit logistic distribution (cf. HMC Example 6.1.2) with pdf f(z) = e */(1+
e~%)2. Investigate the location-scale version of the logistic distribution, i.e. the family of
PDFs f((x — p) Jo)/o for p € R, 0 > 0, and develop the likelihood, score vector, infor-
mation matrix, maximum likelihood estimation etc. Use the function h = —log f in the
notation, as in Section 10.2 of the notes. Show that p and o are orthogonal parameters, i.e.
the Fisher information matrix is diagonal. Show that the function h is convex, and hence
show that the solution to the likelihood equations is unique. The following substitution
may be useful in order to simplify the integrals: z = (z — p)/o.

5 Saufficiency

See HMC, Sections 7.2-7.4.

5.1 Definition

Let us start with a motivating example.
Example: X; ~ N(p, 7) i.i.d. with log likelihood

n 1
C(p,m) = *glog(%ﬂ') o Z (X; — )’
i=1
n 1 - -
= -3 log (277) — % (Z X2 4 nu? — 2p2X¢>
i=1 i=1
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Hence the log likelihood is determined by

SX = in and SXX = inz

i=1 =1

The statistic (Sx,Sxx)' is called a sufficient statistic for (u, 7). If we write the log likelihood
in terms of the sufficient statistic,

n 1
(p,7) = —§log (2nT) — o (Sxx + nu® — 2uSx)
then (in the present case), the data enter the log likelihood only via the sufficient statistic.
We also note that the sufficient statistic (Sx,Sxx) has dimension 2, so it is a nice summary
statistic, as compared to the full data Xi,...,X,, which form an n-dimensional vector.

Now suppose that 7 is known to have the value 1, say. Then the log likelihood for p is

0(1) = 2 log (27) — ~Sxx — sy + puSx
2 2 2
Then the constant —% log (27) — %S xx does not influence the shape of the likelihood, which
is determined solely by Sx, which is now the sufficient statistic. Hence, the sufficient statistic
depends on which parameters are considered unknown. In the present example, the dimensions
of the parameter and the sufficient statistic are the same (two in the first case, and one in the
second case), although this is not generally the case.

Let X1, ..., X, be i.id. with PDF/PMF f(z;0), for § € . Let
Y| = ’Lbl(Xl, s 7Xn)

be a statistic with PDF/PMF fy, (y;0).
Definition 7.2.1: The statistic Y7 is called sufficient for the parameter 0 if and only if

f(21;0) - - f(2n; 0)
fy1 (ul(xl, ey a:n); 9)

where H (x1,...,x,) is a function that does not depend on 6 € .

Note that in the discrete case, the ratio at the left-hand side of (5.1) is the conditional prob-
ability for the event {X; = z1,..., X, = x,} given Y3 = y1, provided that y; = uy(x1,...,2,).
In other words, the conditional PMF of X1,..., X,, given Y] is

o f@0) - f(xa; 0)
Tt il ) = G G2 0)

provided that y;3 = ui(z1,...,2,), and zero otherwise.
In the continuous case the conditional PDF of Xi,...,X,, given Y7 is proportional to the
left-hand side of (5.1),

=H(x1,...,2y), (5.1)

f(@150) - f(zn;6)
fvy(ui(z1, ..., x0);6)

f(xlw . 'a$n|yl;9) X
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provided that y; = wuj(x1,...,2,), and zero otherwise. The proportionality constant is, roughly
speaking, a Jacobian. Hence, we may interpret the definition of sufficiency as saying that the

conditional distribution of Xi,...,X,, given Y7 is the same for all values of § € (1, ie. is
independent of 6.
Note that the sample (X1,...,X,)" (an n-dimensional statistic) is always sufficient, and

hence, a sufficient statistic always exists.
Example (Gamma distribution) (continued) - X; ~ Ga(6, A) i.i.d. Let us take A\ = 2,
corresponding to the density function

2

°
N = z f
f(z;0) P(2)31:6 orz >0

By using moment generating functions, we know that Y7 = X; + --- + X, is Ga(6,2n), with

PDF
2n

fvi(y1;0) = F(Qn)y%”_le*(?m for y3 >0
Now look at the ratio
n
%xie*(’ri
i=1 _ I'(2n) (z1---2n)
oy (@1 - )P et T(2) (@1 + e )

which is independent of 6. Hence Y; is sufficient for #. Note that again the dimension of the
sufficient statistic and the parameter are the same in this example.

5.2 The Fisher-Neyman factorization criterion

How is the definition of sufficiency related to the idea that the log likelihood is fully determined
by the sufficient statistic? This follows from a criterion due to Fisher, which Neyman later
proved to be a characterization of sufficiency.

Theorem 7.2.1 (Neyman). The statistic Y7 = uq(Xy,...,X,) is sufficient for 6 if and
only if

flx1;0) - f(xn;0) = k1 (u1(x1, ..., 20);0) ko (T1,. .., Zp) (5.2)

where k3 (21, ...,2y) does not depend on 6.

Note that the left-hand side of (5.2) is the likelihood, so that (5.2) may also be written as

L(0) o< k1 (Y1;0) ,

in the sense that the proportionality constant does not depend on @, although it may depend on
X1,...,X,. Furthermore, the log likelihood takes the form

0(0) = const. + logky (Y1;0),
so it follows that the the score function

a log kl (Yl; 9)

U(9) = 6(0) = 5
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depends on the data Xi,..., X, only through Y7 = u1(Xy,..., Xp).
Proof: If Y is sufficient for 6, it follows from (5.1) that

f(xl;e) f(xnve) = le(ul(xlv"‘ 7mn);0)H(x1?"' 7mn)7

which by the definition of sufficiency is of the form (5.2). Conversely, consider the discrete case,
and assume that (5.2) is satisfied. Then

le(yl;H):k'l (y1,9) Z k2 ($17"'7$n)7

Y1=u1(T1,..,Tn)

where the sum is over all z1,...,x, satisfying y; = ui(z1,...,2z,). It follows that
f(x1;0) - f(zn;0) _ ki (up(z1,...,20);0) ko (21,...,25)
fvy(ui(zy, ... 2zp);0) ki (ua(@rs - 2n);0) 200 —n (o) B2 (2152, 20)
k‘g (.’L’l, e 7$n)

Zy1=u1(:c1,,..,xn) ko (1'1, s ,LL‘n)’

which by the assumption about ks does not depend on 6. Hence, Y7 is sufficient for 6.
See HMC p. 384-385 for the proof in the continuous case.
Example 7.2.5. Consider X1, ..., X, i.i.d. from the power distribution

f2:0) =02 for 0 < z < 1,

n
where 6 > 0. Consider the statistic Y7 = HXi‘ Then

i=1
n " 01
f(x150) - f(w;0) = 0" [[ 2" =07 <sz>
i=1 i=1
n
Since this is a function of the data through y; = Hazz only, it follows from the factorization
i=1

criterion that Y7 is sufficient for 6.
Example (Weibull distribution). For the Weibull distribution of Section 3.6 we found
the following score function:

n

Un(0) =

n
+ T, — Z (log X;) e?los X
i=1

which is clearly not a function of any statistic of small dimension. In this case, the full sample
(X1,...,X,)" seems to be the best sufficient statistic we can have.
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5.3 The Rao—Blackwell theorem

A useful result for sufficiency is obtained from a theorem due to Rao and Blackwell. Let us first
review some basic properties of conditional expectations. If X and Y are random variables and

X has expectation, then
E[E(X[Y)] = E(X) (5.3)

and if X has variance, then

Var (X) = E [Var (X|Y)] + Var [E (X|Y)].
It follows that

Var (X) > Var [E (X]Y)] (5.4)

The conditional mean is used in the following result.
Theorem (Rao-Blackwell). Let the statistic Y1 = u;(X1,..., X,) be sufficient for 6, and
let Y5 = ug(X,...,X,) be an unbiased estimator for 6. Then

0 =Ey (Y2|11) (5.5)

is also an unbiased estimator of @, it is a function of Y7, and Vary (5) < Vary (Y2) for all 0 € Q.

Proof. Since Y7 is sufficient for 0, it follows from the discussion above, that the conditional
distribution of Y5 given Y] does not depend on 6. In particular Eg (Y2|Y7) does not depend on
f, and 6 is hence a statistic, i.e. a function of Xi,..., X, that does not involve . Using (5.3)
along with the unbiasedness of Ys, we obtain

Ey (5) — By [Eg (Ya|Y1)] = Eg (Y2) = 6
so that @ is also unbiased. By using (5.4) we obtain
Varg (8) = Varg [y (Y2[11)] < Varg (2),

as desired.

The operation (5.5) is called Rao-Blackwellization. This operation always improves upon
a given unbiased estimator if possible, and gives an estimator that is a function of the sufficient
statistic Y7. However, if Y5 is already a function of Y7, then Rao-Blackwellization does not
change Y5.

Definition 7.1.1. A statistic Yo = ua(X1,...,X,,) is called a Minimum Variance Unbiased
FEstimator (MVUE) for 6 if Y5 is unbiased for 6, and if the variance of Y3 is less than or equal
to the variance of any other unbiased estimator for 6.

In order to find the MVUE, if it exists, the Rao-Blackwell theorem tells us that we should
always look among the Rao-Blackwellized statistics, i.e. estimators that are a function of a
sufficient statistic. There is also the question if the MVUE is unique, but since there may be
more than one sufficient statistic, we cannot in general guarantee that there is a unique MVUE.

A separate question is if the maximum likelihood estimator could be an MVUE. The following
result relates the maximum likelihood estimator to sufficiency.
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Theorem 7.3.2. If the maximum likelihood estimator 0 is uniquely determined from
X1,...,Xp, and Y1 = u1(Xy,...,X,) is a sufficient statistic, then 6 is a function of Y;.
Proof. From the definition of sufficiency, we find that the likelihood has the form

L) = fyy(u1(X1,..., Xn);0)H (X1,...,Xp)
The maximum likelihood estimator 6 satisfies
L) > L(0)
for all 6, or, equivalently,

Fri(Y150) > fy, (Y50)

Hence, we can always determine from the value of the sufficient statistic Y7 if 0 is in fact a
maximum likelihood estimator. If there is more than one maximum likelihood estimator, one
could in principle select between these based on the value of a statistic that is not a function of
Y:. However, if 9 is uniquely determined, then ® must be a function of Yi.
Example 7.3.1. Let X1,..., X, bei.i.d. random variables from the exponential distribution
with PDF
f(z;0) =079 >0

with parameter § > 0. Then
F@1:0) - f(wn; 0) = 0" 0ortben),
so at Y1 = X1 + -+ + X, is sufficient for 6. The log likelihood is
0(0) = nlogf — 6Yy
and the score function is hence

mm:%—n

which yields the maximum likelihood estimator

A_n_l

Note that X; ~ Ga(0,1), which implies that Y7 = X; + - + X, also has a gamma distribution,

Y1 ~ Ga(6,n)
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Hence, we may calculate the mean of 0,, as follows:

Ey (én) — Ey (;)

(n—1
_ond" (n—2)
- (n—1) gt

n
B n—le

where we have used that I'(n) = (n — 1)!. It follows that the statistic

n—1, n—1
70 =

is an unbiased estimator for #. This estimator is a function of the sufficient statistic Y7, and
hence cannot be improved further by Rao-Blackwellization based on conditioning on Y;. Later,
we shall see that this estimator is in fact the UMVE for 6, but for now, all we can say is that it
is the best estimator for 8 based on Y.

In general, there is no unique sufficient statistic. For example, in the above example, both Y}
and the full sample (X71,...,X,)" are sufficient statistics. We hence need a method for selecting
the best sufficient statistic, in some sense, perhaps the statistic with the smallest dimension.

5.4 The Lehmann-Scheffé theorem

The following definition can help us to find the sufficient statistic that has the smallest dimension.
Definition 7.4.1. The family {fy,(-;0) : 0 € Q} is called complete if the condition

Eg[u(Y1)] =0 for all § € Q2

implies that u (y) = 0 except for a set which has probability zero with respect to fy; (+;6) for all
0 € 2. We shall also say that the statistic Y7 is complete.

In the exponential family setting, completeness can often be determined by appeal to the
properties of Laplace transforms (moment generating functions), see below. Here is a simple
example.

Example 7.4.1. Assume that Y7 is exponentially distributed, i.e.

fri(y;0) = 9e=% for y > 0.

where 6 > 0. Then the condition Eg [u (Y7)] = 0 for all § € 2 means

0/ u(y) e % dy = 0 for all 6 > 0. (5.6)
0
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The integral on the left-hand side is the Laplace transform of the function u (y), so (5.6) implies
that u (y) = 0 almost everywhere on Ry, which shows that the family of exponential distrib-
utions is complete. Note that the behaviour of w(y) for y < 0 can be arbitrary, which is of
no consequence, because R_ has probability zero with respect to any member of the family
of exponential distributions. In general, we need only determine u (y) on the support of the
distribution.

Example. Let us consider the Bernoulli distribution with PMF

Frilysp) = p?(1— p)' =¥ for y =0, 1.
Let u be a function defined on the support of Y, i.e.
(y) = ug for =
vy = uy for y=1
Then
Eg [u(Y1)] = (1 — p)uo + pur = uo + p (w1 — uo) (5.7)

Hence, E, [u (Y1)] = 0 for all 1 € (0,1) implies that the linear function (5.7) is zero for all
€ (0,1). This, in turn, implies that both coefficients ug and u; — ug are zero, i.e. ug = u; = 0.
Hence, the function u (y) is zero on the support {0, 1}.
Example. Consider an i.i.d. sample Xi,...,X,, from the normal distribution N(u, ) for
p > 0 with equal mean and variance. Then the statistic (X, S?) is sufficient, but

E, (X, —82) =0 for all 4> 0.

Hence the statistic (X, S2) is not complete, because we have found a nontrivial function of it
with mean zero for all parameter values.
The next result, due to Lehmann and Scheffé, links sufficiency with completeness to produce
a unique MVUE estimator. B N
Theorem (Lehmann-Scheffé). Let 6 be an unbiased estimator of 6 such that ¢ is a
function of a complete sufficient statistic Y;. Then 6 is the unique MVUE of 6.

Proof. By assumption § = u (Y1) and Eg (5) =@ forallf € Q. Let 6, = v (Y1) be unbiased,
so that Ey <§1> = 0 for all 8 € 2. By Rao-Blackwell, there is no loss of generality in assuming

that 51 is a function of Y7, because this can only make its variance smaller. Then
Ey (5—51) — Ey[u (Y1) — v (Y1) =0 for all § € Q.

By the completeness of Y7 we conclude that u (Y1) — v (Y1) = 0 almost surely for all 6 € Q, i.e.
01 = 6 almost surely. Hence, 0 is the unique minimum variance unbiased estimator for 6.
Example (Exponential families). Let us consider a family of distributions with PDF/PMF

F(:0) = a(z) exp [aTu(x) - n(e)] (5.8)

where u(z) is a k-dimensional statistic and @ C R¥. The cumulant function & is defined by
k(0) = log/a(x) exp [HTu(a:)] dx for 0 € Q
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thereby guaranteeing that (5.8) is a PDF, with a similar definition in the discrete case. A
family of distributions of this form is called an exponential family with canonical parameter 6,
canonical parameter domain €2, and canonical statistic u(X). If the canonical parameter domain
) contains an open set, then the statistic u(X) is complete. This may be shown by appeal to
the uniqueness of the moment generating function.

By the reparametrization § = g(1)) we obtain the family

f(z) = a(z) exp |g" (Y)u(z) — x(g(¥))

in which case the completeness of u(X) follows if the domain for g ' (1) contains an open set.
It is interesting to consider the proof of completeness in the case of a natural exponential
family
f(@;0) = a(z) exp [0z — k(0)] (5.9)

Then the equation Ey (£(X)) = 0 for all § € Q for some statistic ¢ implies
/t(:z:)a(a:) exp [0z — k()] dz =0 for all 6 € Q

or

/t(ac)a(av)eea7 dx =0 for all € Q

If Q) contains an open interval, then the uniqueness of the Laplace transform implies that
t(z)a(z) = 0 nearly everywhere, which translates into ¢(X) = 0 almost surely, thereby implying
that X is complete.

Now, consider an ii.d. sample Xi,..., X, from the natural exponential family (5.9) with
joint PDF /PMF

fla;0) = []{a(:)exp[6x; — w(6)]}

=1

= H a(x;)exp [0 (x1 + -+ + zp) — nk(0)]
=1

Let us transform to the joint distribution of Y7, Xs, ..., X,,, where Y7 = X7 + --- + X,,, giving

flyr,xa,...,xn;0) = a (yl — le> Ha(xi) exp [0y1 — nk(0)]
=2 =2

By integrating/summing out x3,...,z, we obtain the marginal distribution for Y3, of the form

fy1;0) = ao(x) exp [0y1 — nr(0)]

for some function ag(z). Hence, Y7 also follows a natural exponential family, now with cumulant
function nk(#). In particular, Y7 is complete if 2 contains an open interval.
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6 The likelihood ratio test and other large-sample tests

6.1 Standard errors

The most common asymptotic technique is perhaps the use of standard errors. From the as-
ymptotic normality of 8,, we obtain

6, ~N <0, 1i1(0)> = N(0,171(0)), approx.
n

The estimated asymptotic covariance matrix for 0., is hence I 71(5,1). This gives the following
standard error for 0,

~

se(fjn) = 173 (,,)

where standa}gd error means the estimated value of the standard deviation of the estimator.
Since 1J(0) = i(6), we may use J(0,,) instead of I(8,), giving the alternative standard error

se(Bu) = \/173(8,)

When we write se(8,), we may use either of these two possibilities. A 1 — «a confidence interval
for 0; is given by the endpoints

éj + se(éjn)zl_%,

where @(zl,%) = 1— 5. Similarly, a test for the hypothesis 0; = 9?, say, may be performed
using
0, — 6°

se(Bjn)
whose distribution is approximately N(0, 1) for n large. This test is an example of a Wald test.
Actually, the Wald test is based on the fact that Z?2 follows asymptotically a x?(1) distribution.

6.2 The likelihood ratio test

We now consider tests for composite hypotheses. Let g C € be a subset of €2 of dimension
q > p, and consider the hypothesis Hy : 8 € 5. We shall assume that, after a reparametrization,
Hy may be written in the form

Hy:0p1 = =0,=0

The alteArnative hypothesis is H4 : 0 ¢ Q. _ 3 .
Let 6, denote the MLE of 6 in , and let ,, = (01,...,0,,0,... ,0)" denote the MLE of 0
under Hy (so that 8,, € Q). Define the log likelihood ratio test by

R, = 2{¢(0,) — 0(6,)}.

Note that R, > 0. We reject Hyp if R, > ¢, which gives a test with level Py, (R, > c). We
normally chose a specified level «, so that ¢ is determined by the equation Pg, (R, > ¢) = a.
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Theorem Under Hy we have
D 2
R,=x*(p—q) as n— oo.

Proof Expand ¢(0) around 6, and use that U(8,,) =

20(0) ~ £B,)} ~ 26— 8,) U@,) — (8- 8,)TT(B.)(60 — B,)
_ ) T{i } NCES
~ VO~ 0,)Ti(0) V(6 - B,)
because %J(@ ) i(0). Now we use
~@ 0~ 1))
Vn(0, - 6) (9) NG

to obtain

~ L 71 i
R \/EU(O) (G)WU(B)

Let 69 = (610, - -,040,0,...,0)" denote the true value of @ under Hy. From matrix theory

we know that there exists an upper triangular matrix 11(1)/ 2, such that

i(80) = ig/*ig”,

T
where ig/2 = (i(l)/z)
Let ¥ = z'(l)/ %9 denote a new parameter, which has score function

U(p) = iy Uiy ),

1/2 1/2

is the inverse of ¢’ . The Fisher information matrix for 1) is

() = iy i0)iy
If 1y = 4./ *0p is the true value of 9 then

(1) =

the p x p identity matrix. Hence, we obtain

2{0(6,) — £(60)} ~

where 7,

—1212T2—T2
[2,1/2,T/2-T/2



1/2

Since 25’ " is upper triangular, Hy is equivalent to ¢, = -+ =9
similar to the above show that

» = 0. Hence, arguments

2((B,) ~ ((00)} = D~ T (3ho)
=1

J

We hence obtain the following approximation to the likelihood ratio test

Ry = 2{€(6,) — £(60)} — 2{¢(6.) — £(60)}

> S0 w)

J=q+1

Q

Since (1)) is the identity matrix, we have that ﬁffl (Yg)s---» ﬁf]p("»bo) are asymptotically

independent, and
1

—U;(hy) 2 N(0,1) as n — oo.
n
Hence, %U q2 (o) - % ~5('¢0) are asymptotically independent and x2(1) distributed, and
consequently

P
1~
Z EUJ2(¢0) ~ X2(p — q), approx.
Jj=q+1

Hence, R, L4 x2(p — q) which we had to prove.

6.3 Wald and score tests

We shall now briefly consider two other types of test, which turn out to be asymptotically
equivalent to the likelihood ratio test. For simplicity, we consider the simple hypothesis Hy :
0 = 6y, where 0 is a given value of 6.

The first test is the Wald test, which is defined by the quadratic form

W, = (én - OO)T 1(6o) (én - 00)

whose asymptotic distribution under Hy is x?(p). The second test is the Rao score test, which
is also a quadratic form
Sp = U"(80)I1(80)U(8y).

The asymptotic distribution of S, under Hj is also XQ(p). The three test statistics R,, W,
and S, are asymptotically equivalent. In all three cases, we reject the hypothesis Hy if the test
statistic is larger than x7__ (p), the 1 — a quantile of the x?(p) distribution.

These tests may be generalized to the case where Hy is composite, see e.g. Cox and Hinkley
(1974), Chapter 9.

50



7 Maximum likelihood computation

7.1 Assumptions

We consider algorithms for calculating the maximum likelihood estimate 0 for a log likelihood
0(0). We assume the following 2 conditions. The parameter domain ) is an open region
(bounded or unbounded) of RP. The log likelihood ¢(8) is twice differentiable in €.

Recall that the score function and observed information matrix are defined by

U = 60
JO) = —U(0).

The Fisher information
I(0) = Ey[J(0)]

is positive-definite for any 6 € €. R
The overall objective is to find the maximum likelihood estimate 6, satisfying

~

(6) > ((6) V6 € Q.

In practice, the best we can hope for is to find a local maximum 0 of £; in particular 6 is assumed
to be a root of U.
Our goal is to calculate 8 with a given accuracy relative to the asymptotic standard errors

se(6;) = 1/ 171(8).

Hence, we use a convergence criterion of the form 104 |I1(8) |_1/ 2 where |-| denotes determinant,
and d is the desired number of significant digits relative to a given se(éj). A good choice for d is
2 or 3. Sometimes the asymptotic standard error is calculated from J ~1(8), but this value is not
suitable as a reference for the convergence criterion, because J (@) may not be positive-definite
when @ is far from 6.

We consider methods that ensure convergence to a local maximum of £. Our methods take
the statistical nature of the problem into account by using I(0) instead of J(@). Systematic

accounts of numerical optimization methods may be found in Dennis and Schnabel (1983), Smyth
(2002) and Lange (2004).

7.2 Stabilized Newton methods

The best optimization methods for our purpose are the so-called stabilized Newton methods.
Let K(0) be a given positive-definite information matrix, e.g. I(0) or J(€). Note that the
requirement that J (@) be positive-definite is equivalent to ¢ being strictly concave. Hence, if ¢
is not strictly concave we must use I(0) instead of J(0).

A stabilized Newton method based on K (0) is an iterative method of the following form:

1. Starting value: Find a suitable starting value @y and let 8 = 6.

2. Search direction: For given 0, calculate § = K ~1(8)U(8) (the stabilized Newton step).
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3. Step length: Compute a positive scalar « such that 6 + ad is inside Q (boundary check)
and such that

0(0 + ad) > £(0) (ascent check). (7.1)

4. Convergence: Stop when the convergence criterion

lad] < 1074 |1(8)| "/ (7.2)
is met (where ||-|| denotes Euclidean norm), or if the number of iterations exceeds a certain
number maziter.

5. Update: Otherwise update 6
0" =0 + ad;

and return to Step 2, with 6 = 0*.

Starting with 6, the method calculates a sequence 8y, 61, 02, ... that is designed to converge
towards the maximum likelihood estimate 8. An algorithm satisfying (7.1) in each step is called
an ascent method. In order to obtain an ascent method, it is important to use a positive-definite
information matrix K (0), which assures that the search direction § points in an uphill direction,
as shown below. In this way, a small enough step length « will guarantee that (7.1) is satisfied.
For further information about stabilized Newton methods, see Bard (1974), Gill et al. (1981),
Luenberger (1969) and Everitt (1987).

In practice it may be better to replace (7.2) by the criterion

a?8'1(0)6 < 107 (7.3)

based on the weighted norm ||| ;) = (z71(6)z) Y 2, say, which is slightly easier to handle than
(7.2). Note, however, that either of (7.2) and (7.3) is satisfied for a small enough. Hence, the
step length calculation should in practice be designed to always take a good step in the right
direction, or in other words avoid making a so small that the iterations are halted prematurely.

7.3 The Newton-Raphson method

Assume now that /¢ is strictly concave, and take K(0) = J(0), which is now, by assumption,
positive-definite for all 8. Taking a = 1 gives the Newton-Raphson method

0 =0+J71O)U0), (7.4)

where 6* is the updated value of 6, and § = J~1(8)U(6) is called the Newton step. Adding
a step length calculation gives a stabilized Newton-Raphson method. The Newton-Raphson
method derives from the Taylor-expansion

U(9*) ~ U(0) — J(0) (6" — 0). (7.5)

If 6* = @, then the left-hand side of (7.5) is zero, which motivates us to define 8* by (7.4),
making the right-hand side of (7.5) zero.
Some properties of the Newton-Raphson method:
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e The convergence of (7.4) is quadratic near the maximum, provided U(@) is Lipschitz con-
tinuous (Dennis and Schnabel, 1983, p. 22). Quadratic convergence means that, roughly
speaking, the number of correct figures doubles in each iteration.

e The step length calculation is designed to avoid problems where the Newton step overshoots
or undershoots the target because £ may not be quadratic away from the maximum.

e The step length calculation should be designed such that it does not interfere with the
quadratic convergence of the algorithm near the maximum. As mentioned above, (7.2)
or (7.3) are easily satisfied if v is chosen small enough, which risks halting the iterations
prematurely.

7.4 Fisher’s scoring method
Taking K (0) = I(0) gives Fisher’s scoring method
0*=0+1'(0)U(6), (7.6)

which is a widely applicable, and usually quite stable algorithm, when step length calculation is
used. The main assumption for Fisher’s scoring method is that I(6) should be positive-definite
for all @, which holds for any regular statistical model, making Fisher scoring the best general
method for maximum likelihood computation.

Some properties of Fisher’s scoring method:

e The convergence is usually linear near the maximum. Linear convergence means that,
roughly speaking, the same number of correct figures are added in each iteration.

e Far from the maximum, the algorithm tends to make good steps in the right direction,
making it robust to badly behaved log likelihoods or bad starting values. In particular, ¢
does not need to be strictly concave.

e As for the Newton-Raphson method, the step length calculation is important far from the
maximum, but should be avoided near the maximum.
7.5 Step length calculation

As already mentioned above, the step length calculation is important in order to obtain an

ascent method, which in turn helps avoiding divergence due to a poor starting value. The step

length calculation may be implemented in many different ways, but a good method should strike

a suitable balance between maintaining control at the beginning of the iterative process, while

relying on the good convergence properties of the stabilized Newton methods near the maximum.
Let the function g be defined for a > 0 as follows:

gla) = (6 + ad) — £(6),
provided that 8 4+ ad € 2. We may then proceed with the step length calculation as follows:

1. Boundary check: If @ + ad ¢ 2, then we repeatedly divide a by 2 until 8 + ad € .
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2. Quadratic interpolation: If g(a)) < 0 replace a by

o287 U(8)
2 {a&T Uo) — g(a)}

Note here that setting g(a) = 0 if @ + ad ¢ € has the effect of halving the step length, so
that 1. and 2. may be combined into a single step.

3. Ascent check: If g(a) > 0 then exit the step length calculation with the current value of
a, else return to Step 2.

Comments on the step length calculation.

e The effect of Step 2 is to locate approximately the maximum for g by a quadratic in-
terpolation in the interval from 0 to a. Note that g(0) = 0 and ¢(0) = §' U(9) =
U'(0)K~1(0)U(0) > 0, where we have used the fact that K () is positive-definite, which
in turn implies that K ~1(@) is positive-definite. Let ¢(z) = az? + bz be a quadratic func-
tion that agrees with g at 0 and o and has the same derivative as g at 0. The coefficients
of ¢ are then

ad  U() — g(a)
a = - 5 <0
«@
b = §'U(6) >0,

where we have used the fact that g(a) < 0. The maximum for ¢(x) is attained between 0
and «/2 for the following value:
26T U(0)
xr = - :
2{a8" U(6) — ()}

e Steps 2-3 guarantee an increase of the log likelihood value in each iteration. Note that the
quadratic interpolation is skipped if g(a) > 0, i.e. if the « obtained after the boundary
check provides an increase of the log likelihood value.

7.6 Convergence and starting values

The algorithm will tend to converge towards a local maximum of ¢ somewhere near the starting
value 6y. To ensure that the iterations converge towards a statistically meaningful local maxi-
mum, it is hence useful to use a statistically meaningful starting value, for example based on a
moment estimator.

If it is suspected that there are other local maxima than the one found, one may restart the
algorithm from a new starting value several multiples of the criterion |I (0)|_1/ % away from the
original root 6.
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