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Abstract
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tics. HMC refers to the textbook Hogg et al. (2013).

Key words: Asymptotic theory, consistency, Cramér-Rao inequality, e¢ ciency, exponential
family, estimation, Fisher�s scoring method, Fisher information, identi�ability, likelihood,
maximum likelihood, observed information, orthogonality, parameter, score function, statis-
tical model, statistical test, su¢ ciency.

Fisher (1922), under the heading "The Neglect of Theoretical Statistics", wrote: Several
reasons have contributed to the prolonged neglect into which the study of statistics, in its
theoretical aspects, has fallen. In spite of the immense amount of fruitful labour which has
been expended in its practical application, the basic principles of this organ of science are
still in a state of obscurity, and it cannot be denied that, during the recent rapid development
of practical methods, fundamental problems have been ignored and fundamental paradoxes
left unresolved. Fisher then went on to introduce the main ingredients of likelihood theory,
which shaped much of mathematical statistics of the 20th Century, including concepts such
as statistical model, parameter, identi�ability, estimation, consistency, likelihood, score func-
tion, maximum likelihood, Fisher information, e¢ ciency, and su¢ ciency. Here we review
the basic elements of likelihood theory in a contemporary setting.

Prerequisites: Sample space; probability distribution; discrete and continuous random vari-
ables; PMF and PDF; transformations; independent random variables; mean, variance, co-
variance and correlation.

Special distributions: Uniform; Bernoulli; binomial; Poisson; geometric; negative binomial;
gamma; chi-square; beta; normal; t-distribution; F -distribution.
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1 Stochastic convergence and the Central Limit Theorem

� Setup: Let X denote a random variable (r.v.) and let fXng1n=1 denote a sequence of r.v.s.,
all de�ned on a suitable probability space (C;B; P ) (sample space, �-algebra, probability
measure).

� De�nition: Convergence in probability. We say that

Xn
P! X as n!1

(Xn converges to X in probability) if

lim
n!1

P (jXn �Xj � ") = 0 8" > 0

� De�nition: Convergence in distribution. If F is a distribution function (CDF) we say
that

Xn
D! F as n!1

(Xn converges to F in distribution) if

P (Xn � x)! F (x) as n!1 for all x 2 C(F )

where C(F ) denotes the set of continuity points of F . If X has distribution function F ,
we also write

Xn
D! X as n!1

� Properties: As n!1

1. Xn
P! X ) aXn

P! aX

2. Xn
P! X ) g (Xn)

P! g (X) if g is continuous

3. Xn
P! X ) Xn

D! X

4. If Xn
P! X and Yn

P! Y then

Xn + Yn
P! X + Y and XnYn

P! XY (1.1)

� Example: Let X be symmetric, i.e. �X � X, and de�ne

Xn = (�1)nX

Then
Xn

D! X

(meaning that Xn converges to the distribution of X), since FXn = FX for all n, but unless
Xn is constant,

Xn 9 X in probability
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� However, we have the following properties

1. Xn
D! c) Xn

P! c

2. Xn
D! X and Yn

P! 0 then Xn + Yn
D! X

3. Xn
D! X ) g (Xn)

D! g (X) if g is continuous

4. Slutsky�s Theorem: If Xn
D! X and An

P! a, Bn
P! b then

An +BnXn
P! a+ bX

� Example: Let Xn and Yn be two sequences such that Xn
D! X and Yn

D! X The following
examples show that we do not in general have a result similar to (1.1) for convergence in
distribution.

1. Suppose that X is symmetric (see above), and let Xn = X and Yn = �X for all n.
Then

Xn + Yn = X �X = 0

so clearly Xn + Yn converges i distribution to 0 as n!1.
2. Now suppose that for each n, Xn and Yn are independent and identically distributed
with CDF F (x) = P (X < x) for all x. Now

Xn + Yn
D! FX1+Y1

where FX1+Y1(x) = P (X1 + Y1 � x) for all x, corresponding to the convolution of X1
and Y1: Hence, the assumption that Xn

D! X and Yn
D! X is not enough to determine

the limiting distribution of Xn + Yn, which in fact depends on the sequence of joint
distribution of Xn and Yn.

� Statistical setup:
Let X1; X2; : : : be a sequence of i.i.d. variables. Assume

� = E(Xi) and �2 = Var(Xi)

De�ne for n = 1; 2; : : :

Tn =
nX
i=1

Xi and �Xn =
1

n
Tn

Then

E( �Xn) = � Var( �Xn) =
�2

n
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� The (Weak) Law of Large Numbers (LLN) says

�Xn
P! �

Proof: Use Chebyshev�s inequality

P
���Xn � �

�� � "
�
� �2=n

"2
! 0 as n!1

� Convergence to the standard normal distribution

P (Xn � x)! �(x) as n!1;

for all x 2 R, where
�(x) = (2�)�1=2

Z x

�1
e�

1
2
t2dt:

� Now we de�ne
Zn =

p
n( �Xn � �)

for which
E(Zn) = 0 Var(Zn) = �2

� The Central Limit Theorem (CLT) (see James, p. 265 or HMC p. 307) says

Zn
D! N(0; �2) as n!1

Practical use p
n( �Xn � �) � N(0; �2) approx.

which implies

�Xn � N
�
�;
�2

n

�
approx.

Rule: The approximate normal distribution shares with �Xn its mean and variance.

Example Bernoulli trials. Assume that the Xi are i.i.d. Bernoulli variables,

P (Xi = 1) = � = 1� P (Xi = 0)

Hence we use � as probability parameter, which is also the mean of Xi,

� = E(Xi) and �2 = Var(Xi) = �(1� �)

Then

Tn =

nX
i=1

Xi = #of 1s in a sample of n

In fact Tn � Bi(n; �) (binomial distribution). Then, by the LLN

�Xn
P! �
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and by the CLT

Zn
D! N(0; �(1� �))

so that
Tn � N(n�; n�(1� �)) approx.

� Proofs based on the cumulant generating function. Let Xi have cumulant generat-
ing function (CGF) �(s) = log E

�
esXi

�
. Note that Xn has CGF n� (s=n) ; which converges

to s�; which is the CGF of the constant �. This proves LLN. For
p
n
�
Xn � �

�
we have

the CGF n� (s=
p
n)� s�

p
n = 1

2�
2s2 +O(n�1=2) which converges to N(0; �2):

� Empirical variance: De�ne

S2n =
1

n� 1

nX
i=1

�
Xi � �Xn

�2
=

n

n� 1

 
1

n

nX
i=1

X2
i � �X2

n

!

Now, by the LLN
1

n

nX
i=1

X2
i
P! E(X2

i ) = �2 + �2 as n!1

and
�X2
n
P! �2 as n!1

so by the properties above

S2n
P! �2 as n!1

and for that matter we also have

Sn
P! � as n!1

� The �-method: If the sequence Xn satis�es

p
n(Xn � �)

D! N(0; �2) as n!1

and if g : R! R is di¤erentiable at � and _g(�) 6= 0, then
p
n [g (Xn)� g (�)]

D! N(0; �2 _g2(�)) as n!1

If _g(�) = 0, the asymptotic distribution is degenerate at zero. Note that

g (Xn) � N(g (�) ; �2 _g2(�)=n), approx.

so that g (Xn) has asymptotic mean g (�) and asymptotic variance �2 _g2(�)=n.
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� Proof (sketch): By Taylor-expansion to �rst order, we obtain
p
n [g (Xn)� g (�)] � _g(�)

p
n (Xn � �)

D! _g(�)N(0; �2)

= N(0; �2 _g2(�))

� De�nition: A sequence fXng1n=1 is called bounded in probability if for any " > 0 there
exists b" > 0 such that

P (jXnj � b") � 1� " for n large enough.

� Properties:

1. If Xn
D! X then fXng1n=1 is bounded in probability.

2. If fXng1n=1 is bounded in probability then

Yn
P! 0) XnYn

P! 0

� The o and oP notation. Recall that an = o(bn) for bn ! 0 as n!1 is de�ned by
an
bn
! 0 as n!1

This notation is used in connection with Taylor-expansions, e.g.

g(y) = g(x) + _g(x)(y � x) + o (jy � xj)

� o in probability, denoted oP , is de�ned by

Yn = oP (Xn),
Yn
Xn

P! 0 as n!1

� Similarly O in probability, denoted OP , is de�ned by

Yn = OP (Xn),
Yn
Xn

is bounded in probability.

� Theorem: If fXng1n=1 is bounded in probability, and
Yn = oP (Xn)

then
Yn

P! 0 as n!1

� Proof of �-method revisited. Use Taylor expansion with remainder term
g (Xn)� g (�) = _g(�) (Xn � �) + oP (jXn � �j)

Then p
n [g (Xn)� g (�)] = _g(�)

p
n (Xn � �) + oP (

p
n jXn � �j)

Since
p
n (Xn � �)

D! N(0; �2) we �nd that
p
n jXn � �j is bounded in probability. Hence

oP (
p
n jXn � �j)

P! 0 as n!1
which implies the result.
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2 The log likelihood function and its derivatives

2.1 Likelihood and log likelihood

� Likelihood and log likelihood: Let X1; X2; : : : ; Xn be i.i.d. with either

� probability density function f�(x) (continuous case);

� probability mass function f�(x) (discrete case).

� is a real parameter with domain 
 (nonempty interval). � is unknown, but we assume
that the true distribution of X1; X2; : : : ; Xn corresponds to f�0(x) for some �0 2 
.

� Regularity conditions:

1. The parameter � is identi�able, i.e. if f�1(x) = f�2(x) for almost all x 2 R then
�1 = �2.

2. The support of f�(x) is the same for all � 2 
.
3. The true parameter value �0 belongs to the interior of 
.

4. f�(x) is twice continuously di¤erentiable with respect to � for almost all x:

5. @
@� and

R
can be interchanged (continuous case), or @

@� and
P
can be interchanged

(discrete case).

� The likelihood function is a stochastic function Ln : 
! [0;1) de�ned by

Ln(�) = f(X1; X2; : : : ; Xn; �) for � 2 
,

where

f(x1; x2; : : : ; xn; �) =

nY
i=1

f�(xi)

is the joint probability density/mass function for X1; X2; : : : ; Xn.

The log likelihood function is the stochastic function `n : 
! R de�ned by

`n(�) = logLn(�) = log f(X1; X2; : : : ; Xn; �)

=

nX
i=1

log f�(Xi):

Strictly speaking, `n(�) takes the value �1 for Ln(�) = 0, but this is not a problem,
because the region where f(x1; x2; : : : ; xn; �) = 0 has probability zero.
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Example - Bernoulli trials

f�(x) = �x(1� �)1�x for x = 0; 1

`n(�) =
nX
i=1

logf�Xi(1� �)(1�Xi)g

=
nX
i=1

fXi log�+ (1�Xi) log(1� �)g 0 < � < 1

= Tn log
�

1� � + n log(1� �):

� Parameter transformation.
Now suppose we work with  de�ned by � = g( ) instead of �, assuming that g is 1-1.
Then the log likelihood for  is

è
n( ) =

nX
i=1

log fg( )(Xi)

= `n(g( ))

so we just insert � = g( ) in ` to obtain the new log likelihood.

Example - Bernoulli trials:

Let � = e 

1+e 
; then  = log �

1��

è
n( ) = Tn + n log

1

1 + e 

= Tn � n log(1 + e )

� Data transformation. Consider a 1-1 transformation Yi = h(Xi), which is used instead
of Xi.

Continuous caseWe assume now that h is di¤erentiable. Then Yi has probability density
function

f�(h
�1(y))

dx

dy
(y);

so the new log likelihood isè
n(�) = è(�; Y1; Y2; : : : ; Yn)

=

nX
i=1

logff�(h�1(Yi))
dxi
dyi
(Yi)g

=

nX
i=1

logff�(Xi)g+
nX
i=1

log
dxi
dyi
(Yi)

= `(�;X1; X2; : : : ; Xn) + const.;
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where "const." does not depend on �. We use only _̀n(�) and �̀n(�) and di¤erences be-
tween log likelihood values (or likelihood ratios, see below) etc., so the constant may be
disregarded. Hence: Data transformation does not alter the likelihood.

The same conclusion is obtained in the discrete case, because the probability mass func-
tion of Y is f�(h�1(y)) = f�(x), so èn(�) = `n(�).

Example - Bernoulli trials: Let Yi = 1�Xi, then f�(y) = �1�y(1� �)y for y = 0; 1.

è
n(�) =

nX
i=1

f(1� Yi) log �+ Yi log(1� �)g

=

nX
i=1

fXi log�+ (1�Xi) log(1� �)g

= `n(�)

For the next result we assume Regularity conditions 1. (� identi�able) and 2. (the f�(x)
have common support).

Jensen�s inequality If g is a strictly convex function, and X is a random variable with
E(jXj) < 1 such that the distribution of X is not degenerate, then g(E(X)) < E [g(X)]. If
instead g is strictly concave, then g(E(X)) > E [g(X)].

Theorem

P�0 (Ln(�0) > Ln(�))! 1 as n!1

for any �xed � 6= �0.
Proof (See HMC p. 322). The inequality Ln(�0) > Ln(�) is equivalent to

Rn(�) =
1

n

nX
i=1

log
f�(Xi)

f�0(Xi)
< 0

Now by the Law of Large Numbers

Rn(�)
P! E�0

�
log

f�(Xi)

f�0(Xi)

�
= m;

say. We note that for � 6= �0 the distribution of f�(Xi)=f�0(Xi) is not degenerate, because (in
the continuous case) we have

E�0

�
f�(Xi)

f�0(Xi)

�
=

Z
f�(x)

f�0(x)
f�0(x)dx =

Z
f�(x)dx = 1

and f�(x)=f�0(x) = 1 almost surely would imply � = �0 by the identi�ability of �. The discrete
case is similar.

We hence apply Jensen�s inequality to the strictly convex function g(x) = � log x; which
yields

m = E�0

�
log

f�(Xi)

f�0(Xi)

�
< log E�0

�
f�(Xi)

f�0(Xi)

�
= log 1 = 0
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Taking " = �m > 0, the Law of Large Numbers implies that

P�0 (Rn(�) � 0) = P�0 (Rn(�) � m+ ") � P�0 (jRn(�)�mj � ")! 0 as n!1

Hence P�0fRn(�) < 0g ! 1 as n!1 which implies the desired conclusion.
Since Ln(�0) > Ln(�) with high probability for n large, we conclude that Ln(�) will tend to

have its maximum near �0, the true value of �. This motivates the idea of maximum likelihood
estimation, to be introduced below.

2.2 The score function and the Fisher information function

We now assume that the function � 7! f�(x) is twice continuously di¤erentiable.

� De�ne the score function (random function) by

Un(�) = Un(�;X1; X2; : : : ; Xn)

= _̀
n(�)

=

nX
i=1

@

@�
log f�(Xi)

This function is also known as the e¢ cient score.

� De�ne the Fisher information function also called expected information by

In(�) = Var�fUn(�)g

Note that In(�) is a function from 
 into [0;1). In(�) is known as the intrinsic accuracy
in the physics literature.

� Properties (under regularity conditions):

1. E�fUn(�)g = 0 (�rst Bartlett identity)
2. Var�fUn(�)g = E�fU2n(�)g
3. In(�) = �E�f�̀n(�)g = �E�f _Un(�)g (second Bartlett identity)

Example Bernoulli trials Let � = log �
1�� (actually � is the  from above). Then

`n(�) = Tn� � n log(1 + e�)

Un(�) = Tn � n
e�

1 + e�

E�fUn(�)g = E�(Tn)� n
e�

1 + e�
= 0

because E�(Tn) = n� = n e�

1+e�
.
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In(�) = Var�

�
Tn � n

e�

1 + e�

�
= Var�(Tn)

= n�(1� �)

= n
e�

(1 + e�)2

� Regularity conditions: (see Cox and Hinkley (1974), p.281) Assume that @@� and
R
can

be interchanged (or @
@� and

P
in the discrete case). We knowZ
f�(x)dx = 1 for � 2 


so that for � in the interior of 


@

@�

Z
f�(x)dx = 0

By the regularity condition, Z
@

@�
f�(x)dx = 0

or Z
@

@�
log f�(x)f�(x)dx = 0

because
@

@�
log f�(x) =

@
@�f�(x)

f�(x)
:

Hence

E�

�
@

@�
log f�(X)

�
= 0

The proof in the discrete case is similar. Now

E�fUn(�)g = E�

"
nX
i=1

@

@�
log f�(Xi)

#

=
nX
i=1

E�

�
@

@�
log f�(Xi)

�
= 0 (2.1)

Hence, by the shortcut formula,

Var� [U�] = E�
�
U2n(�)

�
(2.2)
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Di¤erentiating (2.1) once more we obtain

0 =

Z
@2

@�2
log f�(x)f�(x) +

�
@

@�
log f�(x)

�2
f�(x)dx

=

Z
@2

@�2
log f�(x)f�(x)dx+

Z �
@

@�
log f�(x)

�2
f�(x)dx

= E�

�
@2

@�2
log f�(X1)

�
+ E�

(�
@

@�
log f�(X1)

�2)

Hence

In(�) =

nX
i=1

Var�

�
@

@�
log f�(Xi)

�

=

nX
i=1

E�

(�
@

@�
log f�(Xi)

�2)

= �
nX
i=1

E�

�
@2

@�2
log f�(Xi)

�

= �E�
nX
i=1

�
@2

@�2
log f�(Xi)

�
= �E�

h
�̀
n(�)

i
(2.3)

Note that In(�) = ni(�), where i(�) = E�f( @@� log f�(Xi))
2g. So the information of the

sample is n times the information of a single observation.

Example - Bernoulli trials

In(�) = Var�fUn(�)g
= Var�fTng
= n�(1� �)

Maximum information for � = 1
2 .

�̀
n(�) = �n

e�

(1 + e�)2
= �n�(1� �)

so
In(�) = �E�f�̀n(�)g:
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2.3 Observed information

� De�nition: The observed information for � (a stochastic function) is de�ned by

Jn(�) = ��̀n(�):

By (2.3) we have
In(�) = E�fJn(�)g:

Moreover, since

Jn(�) = �
nX
i=1

@2

@�2
log f�(Xi);

we have, by the Law of Large Numbers

1

n
Jn(�)

P! i(�) = �E�
�
@2

@�2
log f�(Xi)

�
:

� Reparametrization Let � = g( ) and assume that g 1-1 and di¤erentiable, then  has
observed information ~Jn( ), where

~J( ) = �e�̀n( ) = � @2

@ 2
`n(g( ))

= � @

@ 

�
_̀
n(g( ))

@�

@ 

�
= ��̀n(g( ))

�
@�

@ 

�2
� _̀

n(g( ))
@2�

@ 2

Hence

~Jn( ) = Jn(g( ))

�
@�

@ 

�2
� Un(g( ))

@2�

@ 2

and

~In( ) = In(g( ))

�
@�

@ 

�2
because E�fUn(�)g = 0.

� Example - Bernoulli trials. Find Jn(�) for � = log �
1�� = g(�). Recall that Un(�) =

Tn � n e�

1+e�
and Jn(�) = n e�

(1+e�)2
= n�(1� �). Hence

� = g(�) = log�� log(1� �)
@�

@�
=

1

�
+

1

1� � =
1

�(1� �)
@2�

@�2
=

2�� 1
�2(1� �)2

~Jn(�) = n�(1� �) 1

�2(1� �)2 � (Tn � n�)
2�� 1

�2(1� �)2
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and
~In(�) =

n

�(1� �)

which now has minimum for � = 1
2 .

� Example - Uniform distribution. Consider the uniform distribution on (0; �) with
PDF

f�(x) = ��11(0;�)(x)

This is an example, where the regularity conditions are not satis�ed, because the support
depends on �. This means that although

@

@�

Z
f�(x)dx = 0;

the left-hand side

@

@�

Z
f�(x)dx =

@

@�

Z �

0
��1dx

= ��1 +

Z �

0

@

@�
��1dx

= ��1 �
Z �

0
��2dx

contains the extra term ��1 due to an application of the chain rule. LetX(n) = max fX1; : : : ; Xng.
The likelihood is

Ln(�) =
nY
i=1

�
��11(0;�)(Xi)

�
= ��n1(0;�)(X(n))

Note that P�
�
X(n) < �

�
= 1, so that Ln(�) = ��n for � � X(n). The likelihood is hence

decreasing for � � X(n), and zero to the left of X(n), and the maximum likelihood estimator

is b�n = X(n): Let us now go through the standard calculations, and see what goes wrong,
if anything. The log likelihood is

`n(�) = �n log � for � � X(n)

The score function is
Un(�) = �n=� for � � X(n)

with mean
E� (Un(�)) = �n=�

which is not zero, so the �rst Bartlett identity is not satis�ed. Moreover,

In (�) = Var� (Un(�)) = 0
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which is disturbing, because zero Fisher information in principle implies that the sample
contains no information about the parameter �. The observed information, however, is

Jn (�) = �n=�2

which is negative, and E� (J(�)) = �n=�2, so the second Bartlett identity also is not
satis�ed. The good news is that the maximum likelihood estimator b�n = X(n) is a reason-

ably good estimate for �. Note, however, that b�n does not satisfy the likelihood equation
Un(�) = 0, and neither In (�) nor Jn (�) seem to express the information in the sample
about � in any reasonable way.

2.4 The Cramér-Rao inequality

Theorem: If ~�n = ~�n(X1; X2; : : : ; Xn) is an unbiased estimator of �, then

Var�(~�n) � I�1n (�):

Proof: (See Silvey, 1975 p. 36) Let f�(x) = f(x1; x2; : : : ; xn; �): By unbiasedness, E�(~�n) =
�, or Z

~�n(x)f�(x)dx = �

Di¤erentiating with respect to � and interchanging @
@� and

R
(given regularity conditions) we

have Z
~�n(x)

@

@�
f�(x)dx = 1

or Z
~�n(x)Un(�)f�(x)dx = 1; Un(�) =

@
@�f�(x)

f�(x)
:

Hence

1 = E�(~�nUn(�))

= Cov�(~�n; Un(�));

because E� fUn(�)g = 0. By the Cauchy-Schwarz inequality we obtain

1 = Cov2�(
~�n; Un(�)) � Var�(~�n)Var�(Un(�)):

Since Var�(Un(�)) = In(�), the inequality follows.
The quantity I�1n (�) is called the Cramér-Rao Lower Bound. An unbiased estimator ~�n

with Var�(~�n) = I�1n (�) is called an e¢ cient estimator. If ~�n is unbiased, but not necessarily
e¢ cient, we call

E��(~�n) =
I�1n (�)

Var�(~�n)

16



the e¢ ciency of ~�n. An e¢ cient estimator is hence the same as an estimator with e¢ ciency 1
for all � If the estimator is biased, the bias should be taken into account (see Cox and Hinkley
(1974), p. 254), by de�ning the mean square error (MSE) as follows

MSE�(~�n) = E

��
~�n � �

�2�
.

Example - Poisson distribution Po(�) with PMF

f�(x) =
�x

x!
e�� x = 0; 1; 2; : : :

The log likelihood

`n(�) =

nX
i=1

Xi log � � n� �
nX
i=1

log (Xi!)

The score function

Un(�) =
nX
i=1

Xi�
�1 � n

The Fisher information

In(�) = Var�(Un(�)) =
n�

�2
=
n

�

The maximum likelihood estimator de�ned by Un(�̂) = 0, is �̂n = �Xn; and since E�
�
�Xn

�
= �,

�̂n is unbiased. Its variance is

Var�(�̂n) =
1

n
� =

1

In(�)

so the estimator is e¢ cient (the Cramér-Rao lower bound is attained).
Example - Geometric distribution has PMF

f�(x) = �(1� �)x; x = 0; 1; : : : 0 < � < 1:

De�ne ~�1 (for n = 1) by

~�1(x) =

�
1 for x = 0
0 for x > 0

Then ~�1 is unbiased,

E�(~�1) = 1� +

1X
x=1

0�(1� �)x = �

and
E�(~�

2
1) = E�(

~�1) = �

Hence Var�(~�) = � � �2 = �(1� �). The log likelihood is

`1(�) = log � +X1 log(1� �)

17



The score function is
U1(�) = ��1 �X1=(1� �)

The Fisher information is

I1(�) = Var�(U1(�)) =
1� �

�2(1� �)2
=

1

�2(1� �)
:

Hence, by the Cramér-Rao inequality

Var�(~�1) �
1

I1(�)

or
�(1� �) � �2(1� �)

which is indeed satis�ed for 0 < � < 1. The e¢ ciency of ~�1 is

E��(~�1) =
I�11 (�)

Var�(~�1)
=
�2(1� �)
�(1� �) = �

Hence the e¢ ciency may be anywhere between 0 and 1; depending on the value of �. Similar
conclusions may be reached for n > 1 as well.

Note: In the course ST802: Estimating Functions we learn about estimating functions,
which are random functions that correspond to unbiased estimating equations, which in turn
de�ne a large variety of estimators, including maximum likelihood estimators and unbiased
estimators. We note that not all maximum likelihood estimators are unbiased, and not all
unbiased estimators are maximum likelihood estimators. One of the main topics of ST802 is to
show that maximum likelihood estimators are optimal, in a suitable sense, among all estimating
function estimators.

3 Asymptotic likelihood theory

3.1 Asymptotic normality of the score function

Main result:
Un(�)p

n

D! N(0; i(�)) as n!1, (3.1)

where

i(�) = E�

(�
@

@�
log f�(X1)

�2)
.

We may also write, for n large

Un(�) � N(0; ni(�)) = N(0; In(�)) approx.

Proof: Note that

Un(�) =

nX
i=1

@

@�
log f�(Xi).

18



Since this is a sum of i.i.d. random variables (for any given �), and since

E�

�
@

@�
log f�(Xi)

�
= 0

and

Var�f
@

@�
log f�(Xi)g = i(�),

the Central Limit Theorem gives

p
n

�
Un(�)

n
� 0
�

D! N(0; i(�)),

as desired. This result will be used in the next section.

3.2 The maximum likelihood estimator

The maximum likelihood estimator �̂n is de�ned as the value of � that maximizes `n(�) in 
,
i.e. satis�es

`n(�̂n) � `n(�) for any � in 
:

In most cases of interest �̂n is a local maximum in the interior of 
, and satis�es _̀n(�̂n) = 0
that is

Un(�̂n) = 0;

which we call the likelihood equation. Often it is the random variable Jn(�̂n) rather than
the random function Jn(�) that is called the observed information. Note that if �̂n is a local
maximum we have Jn(�̂n) > 0. There may be problems with �̂n on the boundary of 
, but this
is more common in the discrete case. Note that if � = g( ), where g is 1-1 and di¤erentiable,
the likelihood equation becomes

Un(g( ̂n))
@�

@ 
= 0

so that  ̂n = g�1(�̂n).
Example - Bernoulli trials Let � = log �

1�� , then the score function is given by

Un(�) = Tn � n
e�

1 + e�
;

which gives the likelihood equation

Tn=n = �Xn =
e�

1 + e�

with solution �̂n = log
�Xn

1� �Xn
. Since � = e�

1+e�
we obtain �̂n = �Xn. If Tn = 0 or Tn = n, the

likelihood equation Un(�) = 0 has no solution. However, �̂n = �Xn is valid even if Tn = 0 or n,
and maximizes the likelihood.

We shall now show that the maximum likelihood estimator has the following two properties:
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1. �̂n is consistent, that is

�̂n
P! � as n!1;

where P! denotes convergence in probability under P�. By de�nition this means

8� > 0 P�(j�̂n � �j � �)! 0 as n!1:

We also say that �̂n is asymptotically unbiased, although this terminology is somewhat
imprecise.

2. �̂n is asymptotically normal and asymptotically e¢ cient,

p
n(�̂n � �)

D! N

�
0;

1

i(�)

�
Since i(�) = In(�)=n we have

Var�(�̂n) = I�1n (�); approx.

which is the basis for the claim of asymptotic e¢ ciency.

These properties show that �̂n is essentially the best available estimator for � when the
sample size is large. The performance of �̂n is generally good also for small samples, and �̂n
is widely used, although often we need to investigate the behavior of �̂n for small samples via
simulation.

3.3 Exponential families

Before proving properties 1: and 2: in the general case, we consider exponential families, where
the proof of these properties is much simpler. Let X have probability density/mass function

f�(x) = a(x)e�x��(�); x 2 R

where � is the canonical parameter with domain 
.
Theorem E�(X) = _�(�) and Var�(X) = ��(�).
Proof (Continuous case). Since

R
f�(x)dx = 1 we have

M(�) = e�(�) =

Z
a(x)e�xdx

It may be shown that in this case
R
and @

@� can be interchanged, so

_M(�) =

Z
xa(x)e�xdx

and
�M(�) =

Z
x2a(x)e�xdx:
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Hence
_M(�)

M(�)
=

Z
xa(x)e�x��(�)dx = E�(X)

and
�M(�)

M(�)
=

Z
x2a(x)e�x��(�)dx = E�(X

2)

Since �(�) = logM(�), we �nd

_�(�) =
_M(�)

M(�)
= E�(X)

and

��(�) =
�M(�)M(�)� _M2(�)

M2(�)

=
�M(�)

M(�)
�
"
_M(�)

M(�)

#2
= E�(X

2)� E2�(X)
= Var�(X)

Now look at the log likelihood for X1; X2; : : : ; Xn i.i.d.

`n(�) =

nX
i=1

log a(Xi) + �Tn � n�(�),

and score function
Un(�) = Tn � n _�(�).

The likelihood equation is
1

n
Tn = _�(�)

or
�Xn = _�(�)

and

In(�) = Var�(Un(�))

= Var�(Tn)

= n��(�)

Note that �Jn(�) = �̀
n(�) = �n��(�), con�rming that In(�) = E�(Jn(�)). Now de�ne �(�) =

_�(�). Since ��(�) = Var�(X) > 0 we obtain

_�(�) = ��(�) > 0;

so that � is strictly increasing, and the solution to

�Xn = � (�)
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is unique, if it exists, and is
�̂n = ��1( �Xn)

where ��1 is increasing and di¤erentiable.
We now look at the two asymptotic properties of �̂n.

1. Consistency. By the Law of Large Numbers

�Xn
P! E�(X1) = �(�) as n!1

and since ��1 is continuous,

�̂n = ��1( �Xn)
P! ��1(�(�)) = � as n!1

Hence �̂n is consistent. Before continuing, we recall the �-method. Assume that

p
n( �Xn � �)

D! N(0; �2) as n!1

Let  n = g( �Xn) where g is di¤erentiable. Then

p
n(g( �Xn)� g(�))

D! N(0; �2 _g2(�)); as n!1

which follows from the expansion

g( �Xn)� g(�)) � _g(�)( �Xn � �):

2. E¢ ciency and asymptotic normality. By the CLT we have
p
n( �Xn � �(�))

D! N(0; ��(�)) as n!1

because ��(�) = Var�(X1). Since ��1 is di¤erentiable, with derivative

@

@x
��1(x) =

1

_�(��1(x))
=

1

��(��1(x))

we obtain

p
n(��1( �Xn)� ��1(�(�)))

D! N

�
0;
��(�)

��(�)2

�
= N

�
0;

1

��(�)

�
= N

�
0;

1

i(�)

�
;

and in particular �̂n is asymptotically e¢ cient. We now pass from the canonical parameter
� to a general parameter  de�ned by � = g( ) where g is 1-1 and di¤erentiable. Then,
�̂n = g( ̂n).  ̂n is consistent, because g is continuous. The expected information for  is
(n = 1)

~{( ) = i(�)

�
@�

@ 

�2
= i(g( )) _g2( ):
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By the �-method applied to g�1(�̂n) we obtain

p
n(g�1(�̂n)� g�1(�))

D! N

�
0;

1

i(�) _g2(�)

�
= N

�
0;

1

~{( )

�
as n!1;

so
p
n( ̂n �  )

D! N

�
0;

1

~{( )

�
as n!1

Hence we have asymptotic normality and e¢ ciency of  ̂n. Let us apply this to the para-
meter

� = E�(X) = �(�)

�̂n = �(�̂n) = �Xn

Since E�(X) = �(�), �̂n is unbiased. Now _�(�) = ��(�), so

p
n(�̂n � �)

D! N

�
0;
_�2(�)

��(�)

�
= N(0; ��(�)) as n!1

Since Var�(�̂n) =
1
n��(�), the Cramér-Rao lower bound is attained.

Example - Normal (Xi � N(�; 1), i.i.d.) Look at the PDF

f�(x) = (2�)�1=2e�
1
2
(x��)2

= (2�)�1=2 exp

�
�1
2
x2 � 1

2
�2 + x�

�
= (2�)�1=2e�

1
2
x2 exp

�
x�� 1

2
�2
�

We can identify this as a natural exponential family with � = � and

�(�) =
1

2
�2

_�(�) = � = �

��(�) = 1

`n(�) = �n
2
log(2�)� 1

2

nX
i=1

(Xi � �)2

= const.+ Tn��
n

2
�2

Un(�) =

nX
i=1

(Xi � �) = Tn � n�

�̂n =
1

n
Tn = �Xn � N(�; 1=n)

In(�) = Jn(�) = Var�(Un(�)) = n

i(�) = 1
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so the asymptotic distribution p
n(�̂n � �)

D! N(0; 1)

is exact for all n = 1; 2; : : :. Note that �̂n is unbiased, i.e. E� (�̂n) = � and Var� (�̂n) = 1=In(�)
(CR lower bound is attained).

Example - Exponential distribution, parameter �

f�(x) = �e��x; x > 0

`n(�) = n log � � �Tn
Un(�) =

n

�
� Tn

In(�) =
n

�2

�̂n =
n

Tn
:

p
n(�̂n � �)

D! N(0; �2)

Example - Poisson Po(�)
�̂n = �Xn

i(�) = 1=�

p
n(�̂n � �)

D! N(0; �)

Example - Binomial distribution

�̂n = �Xn

p
n(�̂n � �)

D! N(0; �(1� �)) as n!1

Example - Geometric distribution with PMF

f�(x) = �(1� �)x for x = 1; 2; : : :

has log likelihood, score function etc.

`n(�) = n log � +
nX
i=1

Xi log(1� �)

Un(�) =
n

�
� Tn
1� �

�̂n =
n

Tn + n

i(�) =
1

�2(1� �)

p
n(�̂n � �)

D! N(0; �2(1� �)) as n!1
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3.4 Consistency of the maximum likelihood estimator

In the following we let �0 denote the true value of �, and we assume that the distributions f�(x)
have common support.

Recall that we have shown the following theorem above.
Theorem

P�0 (`n(�0) > `n(�))! 1 as n!1

for any �xed � 6= �0.
Theorem Consistency (Lehmann (1998) p. 413) With probability tending to 1 as

n!1, the likelihood equation has a solution �̂n which is consistent.
Proof Let � > 0 be such that �0 � � and �0 + � are both in 
, and de�ne

An = fx : `n(�0) > `n(�0 � �) and `n(�0) > `n(�0 + �)g:

Then by the previous theorem we may conclude that P�0(An)! 1 as n!1. In fact, �rst note
that for events A and B; we have

P (Ac \Bc) = 1� P (A [B) � 1� P (A)� P (B)

This implies that

P�0(An) � 1� P�0 (`n(�0) � `n(�0 � �))� P�0 (`n(�0) � `n(�0 + �))

! 1 as n!1.

Hence, for any x 2 An there exists a �̂n(�) 2 (�0 � �; �0 + �) such that _̀n(�̂n(�)) = 0 and
�̂n(�) is a local maximum for `n(�). Hence

P�0

�
j�̂n(�)� �0j < �

�
� P�0(An)! 1 as n!1:

We �nally need to determine a sequence which does not depend on �. Let �̂n be the root
closest to �0. Then, for any � > 0

P�0

�
j�̂n � �0j < �

�
! 1 as n!1

which proves the consistency.
We note that �̂n is not necessarily the maximum likelihood estimator, but we shall work

with �̂n from now on. However, �̂n is in fact a stationary point of `n.
Corollary: If �̂n is unique, then it is consistent. Provided that �̂n is a solution to the

likelihood equation, this follows from the above proof.

3.5 E¢ ciency and asymptotic normality

Now assume that there exists a function M(x) such that���� @3@�3 log f�(x)
���� < M(x) for all x;
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and E�(M(X)) <1. Then
p
n(�̂n � �0)

D! N(0; 1=i(�0)) as n!1

Proof: Expand _̀n(�̂n) around �0

_̀
n(�̂n) = _̀

n(�0) + (�̂n � �0)�̀n(�0) +
1

2
(�̂n � �0)2

...
` (�

�
n);

where ��n lies between �0 and �̂n. The left-hand side is zero, so

0 = Un(�0)� (�̂n � �0)Jn(�0) +
1

2
(�̂n � �0)2

...
` (�

�
n)

= Un(�0)� (�̂n � �0)
�
Jn(�0)�

1

2
(�̂n � �0)

...
` (�

�
n)

�
Hence

p
n(�̂n � �0) =

n�1=2Un(�0)
1
nJn(�0)�

1
2(�̂n � �0)

1
n

...
` (�

�
n)

We now use the following facts:

1. n�1=2Un(�0)
D! N(0; i(�0)) as n!1 (shown above).

2. 1
nJn(�0)

P! i(�0) as n!1 by the Law of Large Numbers.

3. 1
n

...
` (�

�
n) is bounded in probability���� 1n ...` (��n)

���� =

����� 1n
nX
i=1

@3

@�3
log f��n(Xi)

�����
� 1

n

nX
i=1

M(Xi)
P! E�0 [M(X1)] :

Hence
p
n(�̂n � �0) has the same asymptotic distribution as

Un(�0)p
ni(�0)

which is N(0; 1=i(�0))

We have used that �̂n
P! �0 so that �̂n � �0

P! 0, which is hence bounded in probability.
Note also that

Var

�
Un(�0)p
ni(�0)

�
=

ni(�0)

ni2(�0)
=

1

i(�0)
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3.6 The Weibull distribution

Consider the Weibull distribution with PDF

f�(x) = �x��1e�x
�
for x > 0, (3.2)

where � > 0 is a parameter. It is easy to show that (3.2) is a PDF, by the substitution z = x�.
Let Tn =

Pn
i=1 logXi, where X1; : : : ; Xn are i.i.d. from the Weibull distribution. Then we may

write the log likelihood as follows:

`n(�) = n log � + (� � 1)Tn �
nX
i=1

e� logXi .

The score function is

Un(�) =
n

�
+ Tn �

nX
i=1

(logXi) e
� logXi

and the observed information is

Jn(�) =
n

�2
+

nX
i=1

(logXi)
2 e� logXi > 0 (3.3)

so the log likelihood is concave. Hence there is at most one root of the likelihood equation, and
this root is the maximum likelihood estimator. First note that Un(�) goes to 1 as � goes to
zero. Also, note that we may write Un(�) as follows:

Un(�) =
n

�
+

nX
i=1

logXi �
nX
i=1

(logXi) e
� logXi

=
n

�
+

nX
i=1

logXi

�
1� e� logXi

�
:

In the special case where Xi = 1 for all i; the last term is zero and we obtain Un(�) = n
� ; which

goes to 0 as � goes to 1. So in this case (which has probability zero) the likelihood equation
has no root and the maximum likelihood estimate is � = 1; which is outside of the parameter
domain for �. Except for this special case, we observe that the terms logXi

�
1� e� logXi

�
are all

negative, because logXi and 1� e� logXi have opposite signs. In this case, the asymptotic value
of Un(�) as � goes to 1 is either �1 (if at least one Xi > 1) or goes to a negative constant (if
all Xi � 1 and at least one Xi < 1). Hence, with probability 1, there is a unique root b�n of the
likelihood equation Un(�) = 0.

Now let us �nd the unit Fisher information. Using (3.3) we �nd using the substitution y = x�
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that

i(�) =
1

�2
+

Z 1

0
(log x)2 x��x��1e�x

�
dx

=
1

�2
+

Z 1

0

�
log y1=�

�2
ye�ydy

=
1

�2
+
1

�2

Z 1

0
(log y)2 ye�ydy

=
1

�2

�
1

6
�2 + (
 � 1)2

�
=

1

�2
1:9781 : : : ;

where 
 = 0:577221 : : : is Euler�s constant, using for example Maple. The maximum likelihood
estimator b�n is consistent and asymptotically normal and e¢ cient,

p
n
�b�n � �� D! N(0; 1=i(�)).

3.7 Location models

Example: Information for a location family (HMC p. 329�330). Consider the location model
with PDF

f�(x) = f(x� �) for x 2 R,
where � 2 R and f is a given PDF. It is useful to let h(x) = � log f(x), or f(x) = e�h(x). For a
random sample X1; : : : ; Xn from the location model, we obtain the log likelihood

`n(�) = �
nX
i=1

h(Xi � �).

The score function is

Un(�) =

nX
i=1

_h(Xi � �)

where dots denote derivatives, and the observed information is

Jn(�) =
nX
i=1

�h(Xi � �).

Hence, we note that if h is strictly convex, so that �h(x) > 0 for all x 2 R, we obtain Jn(�) > 0,
and so the log likelihood is strictly concave, and there is at most one root of the likelihood
equation. In general, h may of course not be strictly convex, in which case that discussion of
maximum likelihood is more involved.

We note that the �rst Bartlett identity takes the form

E�( _h(X1 � �)) =

Z 1

�1
_h(x� �)e�h(x��) dx

=

Z 1

�1
_h(z)e�h(z) dz = 0;
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where we have used the substitution z = x� �. Note that the equation is trivially satis�ed if h
is an even function (h(x) = h(�x)) and _h hence an odd function ( _h(x) = � _h(�x)). Now let us
�nd the unit Fisher information (also called the Intrinsic Accuracy)

i(�) = E�(�h(X1 � �))

=

Z 1

�1
�h(x� �)e�h(x��) dx

=

Z 1

�1
�h(x)e�h(x) dx.

An alternative expression, obtained from the second Bartlett identity, is

i(�) = E�( _h
2(X1 � �))

=

Z 1

�1
_h2(x� �)e�h(x��) dx

=

Z 1

�1
_h2(z)e�h(z) dz.

As an example we consider the Cauchy distribution with

f(x) =
1

� (1 + x2)
;

for which
h(x) = log � + log(1 + x2)

and
_h(x) =

2x

1 + x2

In this case, h is not convex. In fact

�h(x) =
2
�
1� x2

�
(1 + x2)2

;

which changes sign for x = �1.
Using for example Maple we obtain

i(�) =

Z 1

�1

4z2

� (1 + z2)3
dz =

1

2
:

The maximum likelihood estimator b�n is consistent and asymptotically normal and e¢ cient, but
the likelihood equation Un(�) = 0 may have other roots than b�n.

29



4 Vector parameters

4.1 The score vector and the Fisher information matrix

Let X1; X2; : : : ; Xn be i.i.d. random variables with probability density/mass function f�(x), and
� = (�1; �2; : : : ; �p)

> 2 
, where 
 is a region in Rp.
Example - Xi � Ga(�; �), with density function

f�(x) =
��

�(�)
x��1e��x for x > 0 where � = (�; �)> 2 R2+:

The likelihood function Ln : 
 ! [0;1) is now a random function of vector argument de�ned
by

L(�) = Ln(�) =

nY
i=1

f�(Xi) for � 2 


The log likelihood function `n : 
! R is a random function of vector argument de�ned by

`(�) = `n(�) =

nX
i=1

log f�(Xi) for � 2 


The score vector U : 
! Rp is a random vector function

U(�) =
@`

@�
=

0B@
@`
@�1
...
@`
@�p

1CA p� 1 vector:

We sometimes use the gradient notation

U(�) = r�`(�)

Here and in the following, we often drop the subscript n, and instead Uj(�) will denote the jth
component of U(�) etc. The score vector satis�es the Bartlett identity

E�fU(�)g = 0;

that is E�f @`
@�j
g = 0 for j = 1; : : : ; p:

Expected Information Matrix De�nition

I(�) = Var�fU(�)g p� p matrix

= E�fU(�)U>(�)g
Ijk(�) = Cov�fUj(�); Uk(�)g

= E�fUj(�)Uk(�)g

Reparametrization � = g( ), g : 1-1 di¤erentiable gives the score vector

~U( ) =
@�>

@ 
U(�)
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and expected information matrix

~I( ) =
@�>

@ 
I(�)

@�

@ >

The observed Information Matrix

J(�) = � @2`

@�@�>
p� p matrix

J jk(�) = � @2`

@�j@�k

Second Bartlett identity
I(�) = E�fJ(�)g

4.2 Cramér-Rao inequality (generalized)

De�ne Ijk(�) = fI�1(�)gjk. If ~�n = ~�n(X1; X2; : : : ; Xn) is an unbiased estimator of �1, i.e.

E�f~�ng = �1;

then
Var�f~�ng � I11(�)

See Cox and Hinkley (1974) p. 256. The proof is based on a generalized version of the Cauchy-
Schwarz inequality.

Asymptotic Normality of the score function Recall that the score function

U(�) =

nX
i=1

@

@�
log f�(Xi)

is a sum of i.i.d. variables with mean zero,

E�

�
@

@�
log f�(Xi)

�
= 0

and variance equal to the unit Fisher information matrix

Var�

�
@

@�
log f�(Xi)

�
= i(�):

Recall that the total Fisher information matrix is I(�) = ni(�):
By the Multivariate Central Limit Theorem

1p
n
U(�)

D! Np(0; i(�))
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Note that since
1

n
J(�) =

1

n

nX
i=1

�
� @2

@�@�>
log f�(Xi)

�
then by the Law of Large Numbers

1

n
J(�)

P! �E�
�

@2

@�@�>
log f�(Xi)

�
= i(�)

Maximum Likelihood Estimate (MLE) The MLE �̂n 2 
 is de�ned by L(�̂n) � L(�)
for any � 2 
. In general b�n satis�es the likelihood equation

U(�) = 0

or the p equations with p unknowns, 0B@U1(�) = 0...
Up(�) = 0

1CA
See picture of likelihood contours.

4.3 Consistency and asymptotic normality of the maximum likelihood esti-
mator

Consistency (�0 = true value)
�̂n

P! �0 as n!1

that is
P�0

�


�̂n � �0


 > �
�
! 0 as n!1 8� > 0

Asymptotic normality, asymptotic e¢ ciency

p
n(�̂n � �0)

D! Np(0; i
�1(�0)) as n!1

By the Cramér-Rao inequality, i�1(�0) is the "best" obtainable variance for an unbiased esti-
mator; hence �̂n is asymptotically e¢ cient (see ST802 notes).

Proof (sketch): From Lehmann (1998), p. 429�434. Recall from the one-parameter case
that for any � 6= �0

P�0 (Ln(�0) > Ln(�))! 1 as n!1:

Let Qa denote the sphere, center �0, radius a > 0 for a small, there is high probability that

`(�) < `(�0) for � 2 Qa;

and hence `(�) has a local maximum in the interior of Qa, and this maximum satis�es the
likelihood equation U(�̂n) = 0. Hence we have shown that with probability tending to 1 there
exists a root of U(�) = 0 near �0; proving consistency.
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Asymptotic normality: Expand U(�) around �0,

U(�̂n) � U(�0)� J(��n)(�̂n � �0)

where ��n is on the line segment joining �0 and �̂n. Now U(�̂n) = 0, so

p
n(�̂n � �0) =

�
1

n
J(��n)

��1 1p
n
U(�0)

We have �̂n ! �0; so ��n ! �0 and hence 1
nJ(�

�
n) ! i(�0). By the asymptotic normality of

1p
n
U(�0) we obtain

i�1(�0)
1p
n
U(�0)! Np(0; i

�1(�0)i(�0)i
�1(�0)) = Np(0; i

�1(�0)):

Hence p
n(�̂n � �0)

D! N(0; i�1(�0)) as n!1:

As before, we interpret this as saying that, for n large, we have

�̂n � Np(�0; I�1(�0));

where I(�0) = ni(�0) is the total Fisher information matrix.
Example - Normal distribution (HMC p. 354) Xi � N(�; �), � = (�; �) 2 R� R+

(note that HMC use � as parameter, whereas we use � = �2). The log likelihood for a sample
of size n is

`(�) = �n
2
log (2�)� n

2
log � � 1

2�

nX
i=1

(Xi � �)2

Straightforward calculation give

U1(�) =

nX
i=1

(Xi � �)=�

U2(�) = �
n

2�
+

nX
i=1

(Xi � �)2=(2�2)

and also

J(�) =

�
n
�

Pn
i=1(Xi � �)=�2Pn

i=1(Xi � �)=�2
Pn

i=1(Xi � �)2=�3 � n
2�2

�
We hence obtain

I(�) =

�
n
� 0
0 n

2�2

�
and

I�1(�) =

� �
n 0

0 2�2

n

�
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The maximum likelihood estimates are

�̂n = �Xn and b�n = 1

n

nX
i=1

(Xi � �Xn)
2

The Cramér-Rao lower bound for � is �=n, which is attained by �̂n. b�n is not unbiased, but
S2n =

1

n� 1

nX
i=1

(Xi � �Xn)
2;

is unbiased, E�(S2n) = � . The variance of S2n is
2�2

n�1 , which is bigger than the Cramér-Rao lower

bound 2�2

n , but for n large, the di¤erence is small. By the asymptotic normality of �̂n

p
n

��
�̂nb�n
�
�
�
�
�

��
D! N2

�
0;

�
� 0
0 2�2

��
The exact distributions of �̂n and b�n are

�̂n � N(�; �=n) and b�n � �

n
�2(n� 1)

Example gamma distribution (continued) - Xi � Ga(�; �), with density function

f�(x) =
��

�(�)
x��1e��x for x > 0 where � = (�; �)> 2 R2+:

Log likelihood

`(�; �) = n� log � � n log �(�) + (�� 1)
nX
i=1

logXi � �
nX
i=1

Xi

In order to handle the derivative of the gamma function, we introduce the digamma function

 (�) =
d

d�
log �(�)

and the trigamma function

 1 (�) =
d2

d�2
log �(�)

Now the components of the score function are

U1(�; �) =
n�

�
�

nX
i=1

Xi

and

U2(�; �) = n log � � n (�) +
nX
i=1

logXi
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The likelihood equations are hence equivalent to

�

�
= Xn (4.1)

 (�)� log � = Ln � logXn, (4.2)

where Ln denotes the average of logXi. The observed information matrix is

J(�; �) = n

�
�
�2

1
�

1
�  1 (�)

�
This matrix is non-random, and so I(�; �) = J(�; �), and since I(�; �) is positive-de�nite, it
follows that the log likelihood is strictly concave. In particular, it follows that  1 (�) > 0, and
furthermore, the equation (4.2) has a unique solution.

4.4 Parameter orthogonality

Consider a statistical model parametrized by the parameter � = (�1; �2)
>: In case the Fisher

information matrix is diagonal,

I(�) =

�
I11(�) 0
0 I22(�)

�
,

the parameters �1 and �2 are said to be orthogonal. In this case the inverse Fisher information
matrix is also diagonal,

I�1(�) =

�
1=I11(�) 0

0 1=I22(�)

�
.

It follows that the maximum likelihood estimators b�1 and b�2 are asymptotically independent,
with asymptotic normal distributionsb�j �� N(�j ; 1=Ijj(�)). (4.3)

Here we note that (4.3) implies, for example, that the asymptotic distribution of b�1 is the same,
whether or not the second parameter �2 is considered known or not. This follows because I11(�)
is the Fisher information for �1 when �2 is known, making the asymptotic distribution of b�1 to
be b�1 ��N(�1; 1=I11(�)).

The notion of parameter orthogonality may be generalized in various ways. If � = (�1; : : : ; �p)>

consists of p parameters, we say that �1; : : : ; �p are orthogonal parameters if the Fisher infor-
mation matrix for � is diagonal. If � = (�1;�2)> is a p-dimensional parameter consisting of two
components �1 (q-dim) and �2 ((p�q)-dim), then the parameter vectors �1 and �2 are said to be
orthogonal if the Fisher information matrix I(�), when partitioned in blocks corresponding to
�1 and �2, is block diagonal. In these cases, the consequences are roughly speaking the same as
above, namely that the components of � are asymptotically independent, and that the asymp-
totic distribution of one component does not depend on whether or not the other component or
the remaining elements are known or not.

A further option is to use the observed information matrix J(�) to de�ne orthogonality.
We can hence talk about the parameters �1 and �2 being observed orthogonal. If we want
to distinguish the original concept of orthogonality, we talk about �1 and �2 being expected
orthogonal parameters.
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4.5 Exponential dispersion models

Consider the distribution with PDF or PMF de�ned by

f(x; �; �) = a(x;�)e�[x���(�)]. (4.4)

Note that (4.4) is a natural exponential family for each value of �. The gamma and normal
distributions are of this form. In particular we �nd that the mean and variance are

E(X) = _�(�) (4.5)

Var(X) = ��1��(�) (4.6)

Taking n = 1 in the calculations, we obtain

`(�; �) = log a(X;�) + � [X� � �(�)]
= c(X;�) + � [X� � �(�)] ,

say. The components of the score function are

U1(�; �) = � [X � _�(�)]

U2(�; �) = _c(X;�) +X� � �(�)

where a dot denotes derivative with respect to �. Note that (4.5) follows from the �rst Bartlett
identity, and that (4.6) follows from the second Bartlett identity.

The observed information matrix is

J(�; �) =

�
���(�) � [X � _�(�)]

� [X � _�(�)] ��c(X;�)

�
.

Since X � _�(�) has mean zero, we obtain the following Fisher information matrix

I(�; �) =

�
���(�) 0
0 �E�;� [�c(X;�)]

�
.

This is an example where � and � are orthogonal parameters, meaning that the Fisher informa-
tion matrix is diagonal.

4.6 Linear regression

Let Y1; : : : ; Yn be independent and assume that

Yi � N(�+ �xi; �) for i = 1; : : : ; n,

where x1; : : : ; xn are constants satisfying

x1 + � � �+ xn = 0: (4.7)

This is the standard linear regression model with x being centered, so that x = 0. Let us go
through the likelihood calculations for this model.

36



The log likelihood for the three parameters is

`(�; �; �) = �n
2
log(2��)� 1

2�

nX
i=1

(Yi � �� �xi)2 .

We now introduce the notation

SY = Y1 + � � �+ Yn;

SxY =

nX
i=1

xiYi

Sxx =
nX
i=1

x2i :

We assume that Sxx > 0, in other words that not all xi are identical.
The �rst component of the score function is

@`

@�
=
1

�

nX
i=1

(Yi � �� �xi) =
1

�
(SY � n�) ,

where we have used (4.7). The solution to the �rst likelihood equation is hence

b� = Y n (4.8)

with distribution N(�; �=n).
The next component of the score function is

@`

@�
=
1

�

nX
i=1

xi (Yi � �� �xi) =
1

�
(SxY � �Sxx) ,

where once again we have used (4.7). The solution to the second likelihood equation is

b� = SxY
Sxx

. (4.9)

with distribution N(�; �=Sxx).
The third component of the score function is

@`

@�
= � n

2�
+

1

2�2

nX
i=1

(Yi � �� �xi)2

= � n

2�
+

1

2�2
�
SY Y + �

2 + �2Sxx � 2�SY � 2�SxY
�
,

where we have used (4.7) once more. Inserting the solutions (4.8) and (4.9), the solution to the
third likelihood equation is

b� = 1

n

nX
i=1

�
Yi � b�� b�xi�2 .
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We know from the theory of linear models that an unbiased estimator may be obtained as
follows: e� = 1

n� 2

nX
i=1

�
Yi � b�� b�xi�2 .

with distribution e� � �

n� 2�
2(n� 2),

which has mean � (being unbiased) and variance

Var (e�) = 2�2

n� 2 . (4.10)

We shall now show that the Fisher information matrix is diagonal, as follows:

I(�; �; �) =

24 n
� 0 0

0 Sxx
� 0

0 0 n
2�2

35 ,
making the three parameters orthogonal. The calculation of the entries of I(�; �; �) goes as
follows. The �rst two diagonal elements of the second derivative matrix are

@2`

@�2
= �n

�

@2`

@�2
= �Sxx

�

which immediately give the �rst two diagonal elements of I(�; �; �). The third diagonal element
is

@2`

@�2
=

n

2�2
� 1

�3

nX
i=1

(Yi � �� �xi)2 . (4.11)

Since
E
h
(Yi � �� �xi)2

i
= � ,

it follows that the mean of (4.11) is

E

�
@2`

@�2

�
=

n

2�2
� n�

�3
= � n

2�2
,

giving the third diagonal element of I(�; �; �). We also need to show that the three mixed
derivatives have mean zero. First note that

@2`

@�@�
= 0.

Also note that the two mixed derivatives with respect to � are

@2`

@�@�
= � 1

�2
(SY � n�)
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and
@2`

@�@�
= � 1

�2
(SxY � �Sxx) ,

both of which have mean zero. This completes the calculation of the Fisher information matrix.
The inverse Fisher information matrix is now

I�1(�; �; �) =

24 �
n 0 0
0 �

Sxx
0

0 0 2�2

n

35 .
It follows from the calculations above that b� and b� are both minimum variance unbiased estima-
tors. As regards the unbiased estimator e� , its variance (4.10) does not achieve the Cramér-Rao
lower bound, but since e� is a function of the su¢ cient statistic (SY ; SxY ; SY Y )>, it is a minimum
variance unbiased estimator (see the next section).

4.7 Exercises

1. Find the Fisher information matrix in the regression model when x is not assumed to be
zero.

2. Consider the unit logistic distribution (cf. HMC Example 6.1.2) with pdf f(x) = e�x=(1+
e�x)2. Investigate the location-scale version of the logistic distribution, i.e. the family of
PDFs f((x� �) =�)=� for � 2 R, � > 0, and develop the likelihood, score vector, infor-
mation matrix, maximum likelihood estimation etc. Use the function h = � log f in the
notation, as in Section 10.2 of the notes. Show that � and � are orthogonal parameters, i.e.
the Fisher information matrix is diagonal. Show that the function h is convex, and hence
show that the solution to the likelihood equations is unique. The following substitution
may be useful in order to simplify the integrals: z = (x� �)=�.

5 Su¢ ciency

See HMC, Sections 7.2�7.4.

5.1 De�nition

Let us start with a motivating example.
Example: Xi � N(�; �) i.i.d. with log likelihood

` (�; �) = �n
2
log (2��)� 1

2�

nX
i=1

(Xi � �)2

= �n
2
log (2��)� 1

2�

 
nX
i=1

X2
i + n�

2 � 2�
nX
i=1

Xi

!
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Hence the log likelihood is determined by

SX =

nX
i=1

Xi and SXX =
nX
i=1

X2
i

The statistic (SX ; SXX)> is called a su¢ cient statistic for (�; �): If we write the log likelihood
in terms of the su¢ cient statistic,

` (�; �) = �n
2
log (2��)� 1

2�

�
SXX + n�

2 � 2�SX
�

then (in the present case), the data enter the log likelihood only via the su¢ cient statistic.
We also note that the su¢ cient statistic (SX ; SXX) has dimension 2, so it is a nice summary
statistic, as compared to the full data X1; : : : ; Xn, which form an n-dimensional vector.

Now suppose that � is known to have the value 1, say. Then the log likelihood for � is

` (�) = �n
2
log (2�)� 1

2
SXX �

1

2
n�2 + �SX

Then the constant �n
2 log (2�) �

1
2SXX does not in�uence the shape of the likelihood, which

is determined solely by SX , which is now the su¢ cient statistic. Hence, the su¢ cient statistic
depends on which parameters are considered unknown. In the present example, the dimensions
of the parameter and the su¢ cient statistic are the same (two in the �rst case, and one in the
second case), although this is not generally the case.

Let X1; : : : ; Xn be i.i.d. with PDF/PMF f(x; �); for � 2 
. Let

Y1 = u1(X1; : : : ; Xn)

be a statistic with PDF/PMF fY1(y; �).
De�nition 7.2.1: The statistic Y1 is called su¢ cient for the parameter � if and only if

f(x1; �) � � � f(xn; �)
fY1(u1(x1; : : : ; xn); �)

= H (x1; : : : ; xn) ; (5.1)

where H (x1; : : : ; xn) is a function that does not depend on � 2 
.
Note that in the discrete case, the ratio at the left-hand side of (5.1) is the conditional prob-

ability for the event fX1 = x1; : : : ; Xn = xng given Y1 = y1, provided that y1 = u1(x1; : : : ; xn).
In other words, the conditional PMF of X1; : : : ; Xn given Y1 is

f(x1; : : : ; xnjy1; �) =
f(x1; �) � � � f(xn; �)
fY1(u1(x1; : : : ; xn); �)

provided that y1 = u1(x1; : : : ; xn), and zero otherwise.
In the continuous case the conditional PDF of X1; : : : ; Xn given Y1 is proportional to the

left-hand side of (5.1),

f(x1; : : : ; xnjy1; �) /
f(x1; �) � � � f(xn; �)
fY1(u1(x1; : : : ; xn); �)
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provided that y1 = u1(x1; : : : ; xn), and zero otherwise. The proportionality constant is, roughly
speaking, a Jacobian. Hence, we may interpret the de�nition of su¢ ciency as saying that the
conditional distribution of X1; : : : ; Xn given Y1 is the same for all values of � 2 
, i.e. is
independent of �.

Note that the sample (X1; : : : ; Xn)
> (an n-dimensional statistic) is always su¢ cient, and

hence, a su¢ cient statistic always exists.
Example (Gamma distribution) (continued) - Xi � Ga(�; �) i.i.d. Let us take � = 2;

corresponding to the density function

f(x; �) =
�2

�(2)
xe��x for x > 0

By using moment generating functions, we know that Y1 = X1 + � � � + Xn is Ga(�; 2n), with
PDF

fY1(y1; �) =
�2n

�(2n)
y2n�11 e��y1 for y1 > 0

Now look at the ratio
nY
i=1

�2

�(2)xie
��xi

�2n

�(2n) (x1 + � � �+ xn)
2n�1 e��(x1+���+xn)

=
�(2n) (x1 � � �xn)

�n(2) (x1 + � � �+ xn)2n�1
,

which is independent of �. Hence Y1 is su¢ cient for �. Note that again the dimension of the
su¢ cient statistic and the parameter are the same in this example.

5.2 The Fisher-Neyman factorization criterion

How is the de�nition of su¢ ciency related to the idea that the log likelihood is fully determined
by the su¢ cient statistic? This follows from a criterion due to Fisher, which Neyman later
proved to be a characterization of su¢ ciency.

Theorem 7.2.1 (Neyman). The statistic Y1 = u1(X1; : : : ; Xn) is su¢ cient for � if and
only if

f(x1; �) � � � f(xn; �) = k1 (u1(x1; : : : ; xn); �) k2 (x1; : : : ; xn) ; (5.2)

where k2 (x1; : : : ; xn) does not depend on �.
Note that the left-hand side of (5.2) is the likelihood, so that (5.2) may also be written as

L(�) / k1 (Y1; �) ;

in the sense that the proportionality constant does not depend on �, although it may depend on
X1; : : : ; Xn. Furthermore, the log likelihood takes the form

`(�) = const. + log k1 (Y1; �) ;

so it follows that the the score function

U(�) = _̀(�) =
@

@�
log k1 (Y1; �)
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depends on the data X1; : : : ; Xn only through Y1 = u1(X1; : : : ; Xn).
Proof : If Y1 is su¢ cient for �, it follows from (5.1) that

f(x1; �) � � � f(xn; �) = fY1(u1(x1; : : : ; xn); �)H (x1; : : : ; xn) ;

which by the de�nition of su¢ ciency is of the form (5.2): Conversely, consider the discrete case,
and assume that (5.2) is satis�ed. Then

fY1(y1; �) = k1 (y1; �)
X

y1=u1(x1;:::;xn)

k2 (x1; : : : ; xn) ;

where the sum is over all x1; : : : ; xn satisfying y1 = u1(x1; : : : ; xn). It follows that

f(x1; �) � � � f(xn; �)
fY1(u1(x1; : : : ; xn); �)

=
k1 (u1(x1; : : : ; xn); �) k2 (x1; : : : ; xn)

k1 (u1(x1; : : : ; xn); �)
P

y1=u1(x1;:::;xn)
k2 (x1; : : : ; xn)

=
k2 (x1; : : : ; xn)P

y1=u1(x1;:::;xn)
k2 (x1; : : : ; xn)

;

which by the assumption about k2 does not depend on �. Hence, Y1 is su¢ cient for �.
See HMC p. 384�385 for the proof in the continuous case.
Example 7.2.5. Consider X1; : : : ; Xn i.i.d. from the power distribution

f(x; �) = �x��1 for 0 < x < 1;

where � > 0. Consider the statistic Y1 =
nY
i=1

Xi. Then

f(x1; �) � � � f(xn; �) = �n
nY
i=1

x��1i = �n

 
nY
i=1

xi

!��1

Since this is a function of the data through y1 =
nY
i=1

xi only, it follows from the factorization

criterion that Y1 is su¢ cient for �.
Example (Weibull distribution). For the Weibull distribution of Section 3.6 we found

the following score function:

Un(�) =
n

�
+ Tn �

nX
i=1

(logXi) e
� logXi

which is clearly not a function of any statistic of small dimension. In this case, the full sample
(X1; : : : ; Xn)

> seems to be the best su¢ cient statistic we can have.
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5.3 The Rao�Blackwell theorem

A useful result for su¢ ciency is obtained from a theorem due to Rao and Blackwell. Let us �rst
review some basic properties of conditional expectations. If X and Y are random variables and
X has expectation, then

E [E (XjY )] = E (X) (5.3)

and if X has variance, then

Var (X) = E [Var (XjY )] + Var [E (XjY )] :
It follows that

Var (X) � Var [E (XjY )] (5.4)

The conditional mean is used in the following result.
Theorem (Rao-Blackwell). Let the statistic Y1 = u1(X1; : : : ; Xn) be su¢ cient for �, and

let Y2 = u2(X1; : : : ; Xn) be an unbiased estimator for �. Thene� = E� (Y2jY1) (5.5)

is also an unbiased estimator of �, it is a function of Y1, and Var�
�e�� � Var� (Y2) for all � 2 
.

Proof. Since Y1 is su¢ cient for �, it follows from the discussion above, that the conditional
distribution of Y2 given Y1 does not depend on �. In particular E� (Y2jY1) does not depend on
�, and e� is hence a statistic, i.e. a function of X1; : : : ; Xn that does not involve �. Using (5.3)
along with the unbiasedness of Y2, we obtain

E�

�e�� = E� [E� (Y2jY1)] = E� (Y2) = �

so that e� is also unbiased. By using (5.4) we obtain
Var�

�e�� = Var� [E� (Y2jY1)] � Var� (Y2) ,
as desired.

The operation (5.5) is called Rao-Blackwellization. This operation always improves upon
a given unbiased estimator if possible, and gives an estimator that is a function of the su¢ cient
statistic Y1. However, if Y2 is already a function of Y1, then Rao-Blackwellization does not
change Y2.

De�nition 7.1.1. A statistic Y2 = u2(X1; : : : ; Xn) is called a Minimum Variance Unbiased
Estimator (MVUE) for � if Y2 is unbiased for �, and if the variance of Y2 is less than or equal
to the variance of any other unbiased estimator for �.

In order to �nd the MVUE, if it exists, the Rao-Blackwell theorem tells us that we should
always look among the Rao-Blackwellized statistics, i.e. estimators that are a function of a
su¢ cient statistic. There is also the question if the MVUE is unique, but since there may be
more than one su¢ cient statistic, we cannot in general guarantee that there is a unique MVUE.

A separate question is if the maximum likelihood estimator could be an MVUE. The following
result relates the maximum likelihood estimator to su¢ ciency.
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Theorem 7.3.2. If the maximum likelihood estimator b� is uniquely determined from
X1; : : : ; Xn, and Y1 = u1(X1; : : : ; Xn) is a su¢ cient statistic, then b� is a function of Y1.

Proof. From the de�nition of su¢ ciency, we �nd that the likelihood has the form

L(�) = fY1(u1(X1; : : : ; Xn); �)H (X1; : : : ; Xn)

The maximum likelihood estimator b� satis�es
L(b�) � L(�)

for all �; or, equivalently,
fY1(Y1;

b�) � fY1(Y1; �)

Hence, we can always determine from the value of the su¢ cient statistic Y1 if b� is in fact a
maximum likelihood estimator: If there is more than one maximum likelihood estimator, one
could in principle select between these based on the value of a statistic that is not a function of
Y1. However, if b� is uniquely determined, then b� must be a function of Y1.

Example 7.3.1. LetX1; : : : ; Xn be i.i.d. random variables from the exponential distribution
with PDF

f(x; �) = �e��x; x > 0

with parameter � > 0. Then

f(x1; �) � � � f(xn; �) = �ne��(x1+���+xn),

so at Y1 = X1 + � � �+Xn is su¢ cient for �. The log likelihood is

`(�) = n log � � �Y1

and the score function is hence
U(�) =

n

�
� Y1

which yields the maximum likelihood estimator

�̂n =
n

Y1
=

1

Xn

Note that Xi � Ga(�; 1); which implies that Y1 = X1+ � � �+Xn also has a gamma distribution,

Y1 � Ga(�; n)
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Hence, we may calculate the mean of �̂n as follows:

E�

�
�̂n

�
= E�

�
n

Y1

�
= nE�

�
1

Y1

�
= n

Z 1

0
y�1

�n

�(n)
yn�1e��y dy

=
n�n

(n� 1)!

Z 1

0
yn�1�1e��y dy

=
n�n

(n� 1)!
(n� 2)!
�n�1

=
n

n� 1�

where we have used that �(n) = (n� 1)!: It follows that the statistic

n� 1
n

�̂n =
n� 1
Y1

is an unbiased estimator for �. This estimator is a function of the su¢ cient statistic Y1, and
hence cannot be improved further by Rao-Blackwellization based on conditioning on Y1. Later,
we shall see that this estimator is in fact the UMVE for �, but for now, all we can say is that it
is the best estimator for � based on Y1.

In general, there is no unique su¢ cient statistic. For example, in the above example, both Y1
and the full sample (X1; : : : ; Xn)

> are su¢ cient statistics. We hence need a method for selecting
the best su¢ cient statistic, in some sense, perhaps the statistic with the smallest dimension.

5.4 The Lehmann-Sche¤é theorem

The following de�nition can help us to �nd the su¢ cient statistic that has the smallest dimension.
De�nition 7.4.1. The family ffY1(�; �) : � 2 
g is called complete if the condition

E� [u (Y1)] = 0 for all � 2 


implies that u (y) = 0 except for a set which has probability zero with respect to fY1(�; �) for all
� 2 
. We shall also say that the statistic Y1 is complete.

In the exponential family setting, completeness can often be determined by appeal to the
properties of Laplace transforms (moment generating functions), see below. Here is a simple
example.

Example 7.4.1. Assume that Y1 is exponentially distributed, i.e.

fY1(y; �) = �e��y for y > 0.

where � > 0. Then the condition E� [u (Y1)] = 0 for all � 2 
 means

�

Z 1

0
u (y) e��y dy = 0 for all � > 0. (5.6)
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The integral on the left-hand side is the Laplace transform of the function u (y), so (5.6) implies
that u (y) = 0 almost everywhere on R+, which shows that the family of exponential distrib-
utions is complete. Note that the behaviour of u (y) for y < 0 can be arbitrary, which is of
no consequence, because R� has probability zero with respect to any member of the family
of exponential distributions. In general, we need only determine u (y) on the support of the
distribution.

Example. Let us consider the Bernoulli distribution with PMF

fY1(y;�) = �y(1� �)1�y for y = 0; 1.

Let u be a function de�ned on the support of Y1, i.e.

u (y) =

�
u0 for y = 0
u1 for y = 1

Then
E� [u (Y1)] = (1� �)u0 + �u1 = u0 + � (u1 � u0) (5.7)

Hence, E� [u (Y1)] = 0 for all � 2 (0; 1) implies that the linear function (5.7) is zero for all
� 2 (0; 1). This, in turn, implies that both coe¢ cients u0 and u1�u0 are zero, i.e. u0 = u1 = 0.
Hence, the function u (y) is zero on the support f0; 1g.

Example. Consider an i.i.d. sample X1; : : : ; Xn from the normal distribution N(�; �) for
� > 0 with equal mean and variance. Then the statistic (Xn; S

2
n) is su¢ cient, but

E�
�
Xn � S2n

�
= 0 for all � > 0.

Hence the statistic (Xn; S
2
n) is not complete, because we have found a nontrivial function of it

with mean zero for all parameter values.
The next result, due to Lehmann and Sche¤é, links su¢ ciency with completeness to produce

a unique MVUE estimator.
Theorem (Lehmann-Sche¤é). Let e� be an unbiased estimator of � such that e� is a

function of a complete su¢ cient statistic Y1. Then e� is the unique MVUE of �.
Proof. By assumption e� = u (Y1) and E�

�e�� = � for all � 2 
. Let e�1 = v (Y1) be unbiased,

so that E�
�e�1� = � for all � 2 
. By Rao-Blackwell, there is no loss of generality in assuming

that e�1 is a function of Y1, because this can only make its variance smaller. Then
E�

�e� � e�1� = E� [u (Y1)� v (Y1)] = 0 for all � 2 
.
By the completeness of Y1 we conclude that u (Y1)� v (Y1) = 0 almost surely for all � 2 
, i.e.e�1 = e� almost surely. Hence, e� is the unique minimum variance unbiased estimator for �.

Example (Exponential families). Let us consider a family of distributions with PDF/PMF

f(x; �) = a(x) exp
h
�>u(x)� �(�)

i
(5.8)

where u(x) is a k-dimensional statistic and 
 � Rk. The cumulant function � is de�ned by

�(�) = log

Z
a(x) exp

h
�>u(x)

i
dx for � 2 


46



thereby guaranteeing that (5.8) is a PDF, with a similar de�nition in the discrete case. A
family of distributions of this form is called an exponential family with canonical parameter �;
canonical parameter domain 
, and canonical statistic u(X). If the canonical parameter domain

 contains an open set, then the statistic u(X) is complete. This may be shown by appeal to
the uniqueness of the moment generating function.

By the reparametrization � = g( ) we obtain the family

f(x; ) = a(x) exp
h
g>( )u(x)� �(g( ))

i
in which case the completeness of u(X) follows if the domain for g>( ) contains an open set.

It is interesting to consider the proof of completeness in the case of a natural exponential
family

f(x; �) = a(x) exp [�x� �(�)] (5.9)

Then the equation E� (t(X)) = 0 for all � 2 
 for some statistic t impliesZ
t(x)a(x) exp [�x� �(�)] dx = 0 for all � 2 


or Z
t(x)a(x)e�x dx = 0 for all � 2 


If 
 contains an open interval, then the uniqueness of the Laplace transform implies that
t(x)a(x) = 0 nearly everywhere, which translates into t(X) = 0 almost surely, thereby implying
that X is complete.

Now, consider an i.i.d. sample X1; : : : ; Xn from the natural exponential family (5.9) with
joint PDF/PMF

f(x; �) =
nY
i=1

fa(xi) exp [�xi � �(�)]g

=

nY
i=1

a(xi) exp [� (x1 + � � �+ xn)� n�(�)]

Let us transform to the joint distribution of Y1; X2; : : : ; Xn, where Y1 = X1 + � � �+Xn; giving

f(y1; x2; : : : ; xn; �) = a

 
y1 �

nX
i=2

xi

!
nY
i=2

a(xi) exp [�y1 � n�(�)]

By integrating/summing out x2; : : : ; xn we obtain the marginal distribution for Y1, of the form

f(y1; �) = a0(x) exp [�y1 � n�(�)]

for some function a0(x): Hence, Y1 also follows a natural exponential family, now with cumulant
function n�(�). In particular, Y1 is complete if 
 contains an open interval.
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6 The likelihood ratio test and other large-sample tests

6.1 Standard errors

The most common asymptotic technique is perhaps the use of standard errors. From the as-
ymptotic normality of �̂n we obtain

�̂n � N
�
�;
1

n
i�1(�)

�
= N(�; I�1(�)), approx.

The estimated asymptotic covariance matrix for �̂n is hence I�1(b�n). This gives the following
standard error for �̂jn

se(�̂jn) =

q
Ijj(�̂n)

where standard error means the estimated value of the standard deviation of the estimator.
Since 1

nJ(�)
P! i(�), we may use J(�̂n) instead of I(�̂n); giving the alternative standard error

se(�̂jn) =

q
J jj(�̂n)

When we write se(�̂jn), we may use either of these two possibilities. A 1�� con�dence interval
for �j is given by the endpoints

�̂j � se(�̂jn)z1��
2
;

where �(z1��
2
) = 1 � �

2 . Similarly, a test for the hypothesis �j = �0j , say, may be performed
using

Z =
�̂jn � �0j
se(�̂jn)

whose distribution is approximately N(0; 1) for n large. This test is an example of a Wald test.
Actually, the Wald test is based on the fact that Z2 follows asymptotically a �2(1) distribution.

6.2 The likelihood ratio test

We now consider tests for composite hypotheses. Let 
0 � 
 be a subset of 
 of dimension
q > p, and consider the hypothesis H0 : � 2 
0. We shall assume that, after a reparametrization,
H0 may be written in the form

H0 : �q+1 = � � � = �p = 0

The alternative hypothesis is HA : � =2 
0.
Let �̂n denote the MLE of � in 
, and let ~�n = (~�1; : : : ; ~�q; 0; : : : ; 0)> denote the MLE of �

under H0 (so that ~�n 2 
0). De�ne the log likelihood ratio test by

Rn = 2f`(�̂n)� `(~�n)g:

Note that Rn � 0. We reject H0 if Rn > c, which gives a test with level PH0 (Rn > c). We
normally chose a speci�ed level �, so that c is determined by the equation PH0 (Rn > c) = �.
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Theorem Under H0 we have

Rn
D! �2(p� q) as n!1:

Proof Expand `(�) around �̂n, and use that U(�̂n) = 0

2f`(�)� `(�̂n)g � 2(� � �̂n)>U(�̂n)� (� � �̂n)>J(�̂n)(� � �̂n)

= �
p
n(� � �̂n)>

�
1

n
J(�̂n)

�p
n(� � �̂n)

� �
p
n(� � �̂n)>i(�)

p
n(� � �̂n)

because 1
nJ(�̂n)

P! i(�). Now we use

p
n(�̂n � �) � i�1(�)

U(�)p
n

to obtain

2f`(�̂n)� `(�)g �
p
n(�̂n � �)>i(�)

p
n(�̂n � �)

� 1p
n
U(�)>i�1(�)

1p
n
U(�)

Let �0 = (�10; : : : ; �q0; 0; : : : ; 0)> denote the true value of � under H0. From matrix theory

we know that there exists an upper triangular matrix i1=20 , such that

i(�0) = i
1=2
0 i

>=2
0 ,

where i>=20 =
�
i
1=2
0

�>
Let  = i1=20 � denote a new parameter, which has score function

~U( ) = i
�1=2
0 U(i

�1=2
0  );

where i�1=20 is the inverse of i1=20 . The Fisher information matrix for  is

~{( ) = i
�1=2
0 i(�)i

�>=2
0

If  0 = i
1=2
0 �0 is the true value of  then

~{( 0) = i
�1=2
0 i

1=2
0 i

>=2
0 i

�>=2
0 = Ip;

the p� p identity matrix. Hence, we obtain

2f`(�̂n)� `(�0)g � 1p
n
~U
>
( 0)

1p
n
~U( 0)

=

pX
j=1

1

n
~U2j ( 0):
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Since i1=20 is upper triangular, H0 is equivalent to  q+1 = � � � =  p = 0. Hence, arguments
similar to the above show that

2f`(~�n)� `(�0)g �
qX
j=1

1

n
~U2j ( 0):

We hence obtain the following approximation to the likelihood ratio test

Rn = 2f`(�̂n)� `(�0)g � 2f`(~�n)� `(�0)g

�
pX

j=q+1

1

n
~U2j ( 0):

Since ~{( 0) is the identity matrix, we have that
1p
n
~U1( 0); : : : ;

1p
n
~Up( 0) are asymptotically

independent, and
1p
n
~Uj( 0)

D! N(0; 1) as n!1:

Hence, 1n
~U2q+1( 0); : : : ;

1
n
~U2p ( 0) are asymptotically independent and �

2(1) distributed, and
consequently

pX
j=q+1

1

n
~U2j ( 0) � �2(p� q), approx.

Hence, Rn
D! �2(p� q) which we had to prove.

6.3 Wald and score tests

We shall now brie�y consider two other types of test, which turn out to be asymptotically
equivalent to the likelihood ratio test. For simplicity, we consider the simple hypothesis H0 :
� = �0, where �0 is a given value of �.

The �rst test is the Wald test, which is de�ned by the quadratic form

Wn =
�
�̂n � �0

�>
I(�0)

�
�̂n � �0

�
whose asymptotic distribution under H0 is �2(p). The second test is the Rao score test, which
is also a quadratic form

Sn = U
>(�0)I

�1(�0)U(�0).

The asymptotic distribution of Sn under H0 is also �2(p). The three test statistics Rn, Wn

and Sn are asymptotically equivalent. In all three cases, we reject the hypothesis H0 if the test
statistic is larger than �21��(p); the 1� � quantile of the �2(p) distribution.

These tests may be generalized to the case where H0 is composite, see e.g. Cox and Hinkley
(1974), Chapter 9.
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7 Maximum likelihood computation

7.1 Assumptions

We consider algorithms for calculating the maximum likelihood estimate �̂ for a log likelihood
`(�). We assume the following 
 conditions. The parameter domain 
 is an open region
(bounded or unbounded) of Rp. The log likelihood `(�) is twice di¤erentiable in 
.

Recall that the score function and observed information matrix are de�ned by

U(�) = _̀(�)

J(�) = � _U(�):

The Fisher information
I(�) = E� [J(�)]

is positive-de�nite for any � 2 
.
The overall objective is to �nd the maximum likelihood estimate b�, satisfying

`(b�) � `(�) 8� 2 
:

In practice, the best we can hope for is to �nd a local maximum �̂ of `; in particular �̂ is assumed
to be a root of U .

Our goal is to calculate �̂ with a given accuracy relative to the asymptotic standard errors

se(�̂j) =

q
Ijj(�̂).

Hence, we use a convergence criterion of the form 10�d jI(�)j�1=2, where j�j denotes determinant,
and d is the desired number of signi�cant digits relative to a given se(�̂j). A good choice for d is
2 or 3. Sometimes the asymptotic standard error is calculated from J�1(�), but this value is not
suitable as a reference for the convergence criterion, because J(�) may not be positive-de�nite
when � is far from �̂.

We consider methods that ensure convergence to a local maximum of `. Our methods take
the statistical nature of the problem into account by using I(�) instead of J(�). Systematic
accounts of numerical optimization methods may be found in Dennis and Schnabel (1983), Smyth
(2002) and Lange (2004).

7.2 Stabilized Newton methods

The best optimization methods for our purpose are the so-called stabilized Newton methods.
Let K(�) be a given positive-de�nite information matrix, e.g. I(�) or J(�). Note that the
requirement that J(�) be positive-de�nite is equivalent to ` being strictly concave. Hence, if `
is not strictly concave we must use I(�) instead of J(�).

A stabilized Newton method based on K(�) is an iterative method of the following form:

1. Starting value: Find a suitable starting value �0 and let � = �0.

2. Search direction: For given �, calculate � =K�1(�)U(�) (the stabilized Newton step).
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3. Step length: Compute a positive scalar � such that � + �� is inside 
 (boundary check)
and such that

`(� + ��) > `(�) (ascent check). (7.1)

4. Convergence: Stop when the convergence criterion

k��k < 10�d jI(�)j�1=2 (7.2)

is met (where k�k denotes Euclidean norm), or if the number of iterations exceeds a certain
number maxiter.

5. Update: Otherwise update �
�� = � + ��;

and return to Step 2, with � = ��.

Starting with �0, the method calculates a sequence �0; �1, �2; : : : that is designed to converge
towards the maximum likelihood estimate b�. An algorithm satisfying (7.1) in each step is called
an ascent method. In order to obtain an ascent method, it is important to use a positive-de�nite
information matrixK(�), which assures that the search direction � points in an uphill direction,
as shown below. In this way, a small enough step length � will guarantee that (7.1) is satis�ed.
For further information about stabilized Newton methods, see Bard (1974), Gill et al. (1981),
Luenberger (1969) and Everitt (1987).

In practice it may be better to replace (7.2) by the criterion

�2�>I(�)� < 10�2d (7.3)

based on the weighted norm kxkI(�) =
�
x>I(�)x

�1=2
, say, which is slightly easier to handle than

(7.2). Note, however, that either of (7.2) and (7.3) is satis�ed for � small enough. Hence, the
step length calculation should in practice be designed to always take a good step in the right
direction, or in other words avoid making � so small that the iterations are halted prematurely.

7.3 The Newton-Raphson method

Assume now that ` is strictly concave, and take K(�) = J(�), which is now, by assumption,
positive-de�nite for all �. Taking � = 1 gives the Newton-Raphson method

�� = � + J�1(�)U(�); (7.4)

where �� is the updated value of �, and � = J�1(�)U(�) is called the Newton step. Adding
a step length calculation gives a stabilized Newton-Raphson method. The Newton-Raphson
method derives from the Taylor-expansion

U(��) � U(�)� J(�) (�� � �) . (7.5)

If �� = b�, then the left-hand side of (7.5) is zero, which motivates us to de�ne �� by (7.4),
making the right-hand side of (7.5) zero.

Some properties of the Newton-Raphson method:
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� The convergence of (7.4) is quadratic near the maximum, provided U(�) is Lipschitz con-
tinuous (Dennis and Schnabel, 1983, p. 22). Quadratic convergence means that, roughly
speaking, the number of correct �gures doubles in each iteration.

� The step length calculation is designed to avoid problems where the Newton step overshoots
or undershoots the target because ` may not be quadratic away from the maximum.

� The step length calculation should be designed such that it does not interfere with the
quadratic convergence of the algorithm near the maximum. As mentioned above, (7.2)
or (7.3) are easily satis�ed if � is chosen small enough, which risks halting the iterations
prematurely.

7.4 Fisher�s scoring method

Taking K(�) = I(�) gives Fisher�s scoring method

�� = � + I�1(�)U(�); (7.6)

which is a widely applicable, and usually quite stable algorithm, when step length calculation is
used. The main assumption for Fisher�s scoring method is that I(�) should be positive-de�nite
for all �, which holds for any regular statistical model, making Fisher scoring the best general
method for maximum likelihood computation.

Some properties of Fisher�s scoring method:

� The convergence is usually linear near the maximum. Linear convergence means that,
roughly speaking, the same number of correct �gures are added in each iteration.

� Far from the maximum, the algorithm tends to make good steps in the right direction,
making it robust to badly behaved log likelihoods or bad starting values. In particular, `
does not need to be strictly concave.

� As for the Newton-Raphson method, the step length calculation is important far from the
maximum, but should be avoided near the maximum.

7.5 Step length calculation

As already mentioned above, the step length calculation is important in order to obtain an
ascent method, which in turn helps avoiding divergence due to a poor starting value. The step
length calculation may be implemented in many di¤erent ways, but a good method should strike
a suitable balance between maintaining control at the beginning of the iterative process, while
relying on the good convergence properties of the stabilized Newton methods near the maximum.

Let the function g be de�ned for � � 0 as follows:

g(�) = `(� + ��)� `(�);

provided that � + �� 2 
. We may then proceed with the step length calculation as follows:

1. Boundary check: If � + �� =2 
, then we repeatedly divide � by 2 until � + �� 2 
.
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2. Quadratic interpolation: If g(�) � 0 replace � by

�2�>U(�)

2
�
��>U(�)� g(�)

	
Note here that setting g(�) = 0 if � + �� =2 
 has the e¤ect of halving the step length, so
that 1. and 2. may be combined into a single step.

3. Ascent check: If g(�) > 0 then exit the step length calculation with the current value of
�, else return to Step 2.

Comments on the step length calculation.

� The e¤ect of Step 2 is to locate approximately the maximum for g by a quadratic in-
terpolation in the interval from 0 to �. Note that g(0) = 0 and _g(0) = �>U(�) =
U>(�)K�1(�)U(�) � 0, where we have used the fact thatK(�) is positive-de�nite, which
in turn implies that K�1(�) is positive-de�nite. Let q(x) = ax2 + bx be a quadratic func-
tion that agrees with g at 0 and � and has the same derivative as g at 0. The coe¢ cients
of q are then

a = ���
>U(�)� g(�)

�2
< 0

b = �>U(�) > 0;

where we have used the fact that g(�) � 0. The maximum for q(x) is attained between 0
and �=2 for the following value:

x =
�2�>U(�)

2
�
��>U(�)� g(�)

	 :
� Steps 2�3 guarantee an increase of the log likelihood value in each iteration. Note that the
quadratic interpolation is skipped if g(�) > 0, i.e. if the � obtained after the boundary
check provides an increase of the log likelihood value.

7.6 Convergence and starting values

The algorithm will tend to converge towards a local maximum of ` somewhere near the starting
value �0. To ensure that the iterations converge towards a statistically meaningful local maxi-
mum, it is hence useful to use a statistically meaningful starting value, for example based on a
moment estimator.

If it is suspected that there are other local maxima than the one found, one may restart the
algorithm from a new starting value several multiples of the criterion jI(�)j�1=2 away from the
original root �̂.
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