Multivariate analysis of Gaussian data (MANOVA)

Part I

Wagner H. Bonat Walmes M. Zeviani
wbonat@ufpr.br walmes@ufpr.br
LEG/DEST/UFPR LEG/DEST/UFPR

62a RBras & 17o SEAGRO
July 24–28, 2017
UFLA, Lavras/MG

The univariate analysis of experimental data

Response variables in designed experiments

Analysing the responses individually

Often, two situations occurs

  1. The results are pratically the same for all responses.

    Table of means followed by letters from a pairwise multiple comparisons test to a 3-level factor in a RBD.
    
       Wtr   yield       tg    w100   Kconc
    1 37.5 23.93 a 163.40 a 14.86 a 17.72 a
    2   50 28.69 b 209.40 b 13.80 a 19.01 a
    3 62.5 29.83 b 215.60 b 13.83 a 18.32 a
  2. There is not sufficient evidence in each response.

    ANOVA tables for 4 responses in a RBD.
    
     Response yield :
                Df  Sum Sq Mean Sq F value  Pr(>F)
    blk          4  4.7999  1.2000  0.3937 0.80798
    Wtr          2 19.2544  9.6272  3.1585 0.09749
    Residuals    8 24.3842  3.0480                
    
     Response tg :
                Df Sum Sq Mean Sq F value  Pr(>F)
    blk          4  456.4  114.10  0.7591 0.57990
    Wtr          2 1462.9  731.47  4.8667 0.04142
    Residuals    8 1202.4  150.30                
    
     Response w100 :
                Df Sum Sq Mean Sq F value Pr(>F)
    blk          4 2.6981 0.67452  1.3088 0.3447
    Wtr          2 0.2942 0.14709  0.2854 0.7591
    Residuals    8 4.1230 0.51538               
    
     Response Kconc :
                Df  Sum Sq Mean Sq F value  Pr(>F)
    blk          4  2.5354  0.6339  0.2837 0.88053
    Wtr          2 14.5229  7.2615  3.2506 0.09263
    Residuals    8 17.8711  2.2339                

Some questions

Its is difficult to know

Probably, someone asked himself

Benefits and cautions

Datasets

soybean: water and potassium in the plant production

cotton: impact of defoliation and growth stage

wrc: soil management in the water retention curve

teak: concentration of cations in the soil layers

The next topics

The univariate linear model

Model specification

The model for each observation \(i = 1, \ldots, n\), is \[ \begin{aligned} y_i &\sim \text{Normal}(\mu_i, \sigma^2)\\ \mu_i &= \mathbf{X}_{i.}\boldsymbol{\beta}, \end{aligned} \]

where

The model written for the response (column) vector is \[ \begin{aligned} \mathbf{y} &= \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon} &\sim \text{Normal}_n(\mathbf{0}, \sigma^2 \mathbf{I}) \Rightarrow \epsilon_i \overset{iid}{\sim} \text{Normal}(0, \sigma^2), \end{aligned} \]

where

Likelihood function and estimation

The likelihood function for \(\boldsymbol{\beta}\) and \(\sigma^2\) is

\[ \begin{aligned} L(\boldsymbol{\beta}, \sigma^2) &= \prod_{i=1}^n \left[ (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{ (y_i - \mathbf{X}_{i.}\boldsymbol{\beta})^2}{2\sigma^2} \right\} \right ]\\ &= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{2\sigma^2} \right\}\\ &= (2\pi)^{-n/2} |\sigma^2 \mathbf{I}|^{-1/2} \exp\left\{-\frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \right\}. \end{aligned} \]

The MLE estimators are

\[ \begin{aligned} \boldsymbol{\hat\beta} &= (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}\\ \hat{\sigma}^2 &= (\mathbf{y} - \mathbf{\hat y})' (\mathbf{y} - \mathbf{\hat y})/n, \quad \mathbf{\hat y} = \mathbf{X} \boldsymbol{\hat\beta},\\ \end{aligned} \]

The maximized likelihood is

\[ \begin{aligned} \max_{\beta, \sigma^2} L(\boldsymbol{\beta}, \sigma^2) &= L(\boldsymbol{\hat\beta}, \hat{\sigma}^2) \\ &= (2\pi)^{-n/2} (\hat{\sigma}^2)^{-n/2} \exp\left\{-n/2 \right\}. \end{aligned} \]

A simple example

The soybean dataset: 3 x 5 factorial experiment in a randomized block design (RBD). Analysing the yield of grains (yield). To make the things simpler for now, we subset the data for the potassium level 0. So the model corresponds to the one-way anova.

The model, in terms of the sources of variation or effects is \[ \text{mean}_{ij} = \text{intercept} + \text{BLK}_i + \text{WTR}_j \] where \(i = 1, \ldots, 5;\) and \(j = 1, 2, 3;\).

In greek letters notation \[ \mu_{ij} = \mu_0 + \gamma_i + \eta_j. \]

The \(F\) test

The \(F\) distribution plays a central role in hypotheses tests for univariate Gaussian models.

It can be defined to be distribution of the ratio \[ \frac{\chi^2_{a}/a}{\chi^2_{b}/b} \sim F_{a;b} \] when \(\chi^2_{a}\) and \(\chi^2_{b}\) are independent.

A linear hypothesis can be expressed using different notations:

General linear hypothesis test

Linear hypothesis on \(\boldsymbol{\beta}\) can be defined in terms of matrices \[ H_0: \mathbf{A}\boldsymbol{\beta} = \mathbf{c} \quad \text{vs} \quad H_a: \mathbf{A}\boldsymbol{\beta} \neq \mathbf{c}, \] where \(\mathbf{A}\) is a known matrix of order \(h \times k\) (rank \(h \leq k\)) and \(\mathbf{c}\) is a vector of \(h\) elements.

For example, lets to construct the \(\mathbf{A}\) to test the effect of treatments (4 levels) in a randomized block design (3 blocks). The expected mean for each \(ij\) condition is

\[ \mu_{ij} = \mu_0 + \gamma_i + \eta_j. \] where \(i = 1, \ldots, 3;\) and \(j = 1, \ldots, 4;\). To generate a full rank design matrix, \(\gamma_1\) and \(\eta_1\) are set to zero.

The \(H_0\) states that there is no effect of treatments and can be expressed as

\[ \begin{bmatrix} 0 & 0 & 0 & \textcolor{red}{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \textcolor{red}{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & \textcolor{red}{1} \\ \end{bmatrix} \begin{bmatrix} \mu_0 \\ \gamma_{2} \\ \gamma_{3} \\ \textcolor{red}{\eta_{2}} \\ \textcolor{red}{\eta_{3}} \\ \textcolor{red}{\eta_{4}} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} \quad \Rightarrow \quad\begin{bmatrix} \textcolor{red}{\eta_{2}} \\ \textcolor{red}{\eta_{3}} \\ \textcolor{red}{\eta_{4}} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} .\]

This hypothesis, in particular, can be tested by

Anova table

Consider the ANOVA table based on the reduction in the sum of squares approach (sequential ANOVA).

Define as the sum of squares of the reduced model model \[ \text{RSS}_0 = \text{RSS} + \text{HSS} \] where \(\text{HSS}\) is the treatment sum of squares, that is the sum of squares of the term under the hypothesis \(H_0\).

DF SS MS F
Blocks \(l\) \(R(\gamma|\mu_0)\) \(\phantom{0}\)
Treatments \(h\) \(\text{HSS} = R(\eta|\gamma,\mu_0)\) \(\text{HSS}/h\) \(\frac{\text{HSS}/h}{\text{RSS}/(n - k)}\)
Residuals \(n-k\) \(\text{RSS}\) \(\text{RSS}/(n - k)\)

\[ F = \frac{\text{HSS}}{\text{RSS}} \cdot \frac{n - k}{h} = \frac{\text{RSS}_0 - \text{RSS}}{\text{RSS}} \cdot \frac{n - k}{h} \sim F_{h; n - k}. \]

Note that

The likelihood ratio

The maximized likelihood for a univariate LM is \[ \begin{aligned} \max_{\beta, \sigma^2} L(\boldsymbol{\beta}, \sigma^2) &= L(\boldsymbol{\hat\beta}, \hat{\sigma}^2) \\ &= (2\pi)^{-n/2} (\hat{\sigma}^2)^{-n/2} \exp\left\{-n/2 \right\}. \end{aligned} \]

The likelihood ratio for two nested models is \[ \begin{aligned} \Lambda &= \frac{ \max_{H_1} L(\textit{full model})}{ \max_{H_0} L(\textit{reduced model})}\\ &= \frac{ L(\boldsymbol{\hat\beta}, \hat{\sigma}^2)}{ L(\boldsymbol{\hat\beta}_0, \hat{\sigma}_0^2)}\\ &= \left(\frac{\hat{\sigma}^2}{\hat{\sigma}_0^2} \right)^{-n/2}\\ &= \left(\frac{n\hat{\sigma}^2 + n(\hat{\sigma}_0^2 - \hat{\sigma}^2)}{ n\hat{\sigma}^2}\right)^{n/2}\\ &\propto \frac{\text{RSS}_0 - \text{RSS}}{\text{RSS}} \end{aligned} \]

The deviance \[ n \log \left(\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2} \right) \] approximates to \(\chi^2_{k - q}\) under \(H_0\).

It can be demonstrated that the quantities \[ \begin{aligned} \frac{n(\hat{\sigma}_0^2 - \hat{\sigma}^2)}{\sigma^2} &\sim \chi^2_{h}\\ \frac{n\hat{\sigma}^2}{\sigma^2} &\sim \chi^2_{n - k}\\ \end{aligned} \] are independent and \[ F = \frac{n(\hat{\sigma}_0^2 - \hat{\sigma}^2)}{ n\hat{\sigma}^2}\cdot \frac{n - k}{h} = \frac{\text{RSS}_0 - \text{RSS}}{\text{RSS}} \cdot \frac{n - k}{h} \sim F_{h;n - k} \]

Wald test

Under \(H_0\), \[ \frac{1}{\sigma^2} (\mathbf{A}\boldsymbol{\hat\beta}- \mathbf{c})' [\mathbf{A} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{A}']^{-1} (\mathbf{A}\boldsymbol{\hat\beta}- \mathbf{c}) \sim \chi^2_h. \] Follows that under \(H_0\), the statistic \[ \begin{aligned} F &= \frac{(\mathbf{A}\boldsymbol{\hat\beta}- \mathbf{c})' [\mathbf{A} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{A}']^{-1} (\mathbf{A}\boldsymbol{\hat\beta}- \mathbf{c})}{h\hat{\sigma}^2}\\ &= \frac{(\mathbf{A}\boldsymbol{\hat\beta}- \mathbf{c})' [\mathbf{A} \hat{\Sigma}_{\beta} \mathbf{A}']^{-1} (\mathbf{A}\boldsymbol{\hat\beta}- \mathbf{c})}{h},\\ \end{aligned} \] has the \(F\) distribution with \(h\) and \(n-k\) degress of freedom. The matrix \(\hat{\Sigma}_{\beta} = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}\).

Inferences in the univariate Gaussian linear model

Multivariate Linear Models (MLM)

Model specification

We are now extend the previous notation to consider a vector of \(r\) responses measured in each sample unit.

The model for each sample unit \(i = 1, \ldots, n\), is \[ \begin{aligned} \mathbf{Y}_{i.} &\sim \text{Normal}_r(\boldsymbol{\mu}_i, \Sigma)\\ \boldsymbol{\mu}_i &= \mathbf{X}_{i.}\boldsymbol{B}, \end{aligned} \]

where

The model written for the response matrix is \[ \begin{aligned} \mathbf{Y} &= \mathbf{X}\boldsymbol{B} + \boldsymbol{E} \\ \boldsymbol{E}_{i.} &\sim \text{Normal}_r(\mathbf{0}, \Sigma) \end{aligned} \] where

Likelihood function

The likehood for one sample unit is \[ \begin{aligned} L(\boldsymbol{B},\Sigma,\mathbf{Y}_{i.}) = (2\pi)^{-r/2} |\Sigma|^{-1/2} \exp\left\{ -\frac{1}{2} (\mathbf{Y}_{i.} - \mathbf{X}_{i.}\boldsymbol{B}) \Sigma^{-1} (\mathbf{Y}_{i.} - \mathbf{X}_{i.}\boldsymbol{B})' \right\} \end{aligned} \]

For all sample units is

\[ \begin{aligned} L(\boldsymbol{B},\Sigma,\mathbf{Y}) &= \prod_{i = 1}^n (2\pi)^{-r/2} |\Sigma|^{-1/2} \exp\left\{ -\frac{1}{2} (\mathbf{Y}_{i.} - \mathbf{X}_{i.}\boldsymbol{B}) \Sigma^{-1} (\mathbf{Y}_{i.} - \mathbf{X}_{i.}\boldsymbol{B})' \right\}\\ &= (2\pi)^{-nr/2} |\Sigma|^{-n/2} \exp\left\{ -\frac{1}{2} \sum_{i = 1}^n (\mathbf{Y}_{i.} - \mathbf{X}_{i.}\boldsymbol{B}) \Sigma^{-1} (\mathbf{Y}_{i.} - \mathbf{X}_{i.}\boldsymbol{B})' \right\}. \end{aligned} \]

Using the vectorize (\(\text{vec}\)) operation and kronecker product (\(\otimes\)), the observed data can be reshaped from wide to long format.

The same model is now represented by \[ \mathcal{Y} \sim \text{Normal}_{rn}(\mathcal{X}\boldsymbol{\beta}, \Omega), \] where \(\Omega = \Sigma \otimes \mathbf{I}\).

Also, it can be written as \[ \mathcal{Y} = \mathcal{X}\boldsymbol{\beta} + \mathcal{E}. \]

In the stacked data format, the likelihood function is defined as \[ L(\boldsymbol{\beta}, \Omega) = (2\pi)^{ -\frac{rn}{2} } |\Omega|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (\mathcal{Y} - \mathcal{X}\boldsymbol{\beta})^{'} \Omega^{-1} (\mathcal{Y} - \mathcal{X}\boldsymbol{\beta}) \right\}. \]

The maximized likelihood is \[ \begin{aligned} L(\boldsymbol{\hat\beta}, \hat\Omega) &= (2\pi)^{-rn/2} |\hat\Sigma \otimes \mathbf{I}|^{-1/2} \exp \left\{ -\frac{rn}{2} \right\}\\ &= (2\pi)^{-rn/2} |\hat\Sigma|^{-n/2} \exp \left\{ -\frac{rn}{2} \right\}. \end{aligned} \]

Estimation and properties

\[ \begin{aligned} {\boldsymbol{\hat B}} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}\\ {\boldsymbol{\hat B}}_{.j} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}_{.j}\\ {\boldsymbol{\hat \beta}} &= (\mathcal{X}'\mathcal{X})^{-1}\mathcal{X}'\mathcal{Y}\\ \text{Cov}({\boldsymbol{\hat\beta}}) &= {\hat\Sigma} \otimes (\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} \hat{\sigma}_{11}(\mathbf{X}'\mathbf{X})^{-1} & \cdots & \hat{\sigma}_{1r}(\mathbf{X}'\mathbf{X})^{-1} \\ \vdots & \ddots & \vdots \\ \hat{\sigma}_{r1}(\mathbf{X}'\mathbf{X})^{-1} & \cdots & \hat{\sigma}_{rr}(\mathbf{X}'\mathbf{X})^{-1} \end{bmatrix} \end{aligned} \]

Hypotheses tests on \(\boldsymbol{B}\) or \(\boldsymbol{\beta}\)

A linear hypothesis can be defined in two equivalent ways.

\[ H_0: \mathbf{A}\boldsymbol{B}\mathbf{M} = \mathbf{C} \quad \textrm{vs} \quad H_1: \mathbf{A}\boldsymbol{B}\mathbf{M} \neq \mathbf{C} \]

where

Example of \(\mathbf{A}\boldsymbol{B}\mathbf{M} = \mathbf{C}\) to test \(H_0: \eta_{mj} = 0\) for all \(mj\), \(m = 1, 2; j = 2, \ldots, 4\). These matrices are

\[ \begin{aligned} \begin{bmatrix} 0 & 0 & 0 & \textcolor{red}{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \textcolor{red}{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & \textcolor{red}{1} \\ \end{bmatrix} \begin{bmatrix} \mu_{10} & \mu_{20} \\ \gamma_{12} & \gamma_{22} \\ \gamma_{13} & \gamma_{23} \\ \textcolor{red}{\eta_{12}} & \textcolor{red}{\eta_{22}} \\ \textcolor{red}{\eta_{13}} & \textcolor{red}{\eta_{23}} \\ \textcolor{red}{\eta_{14}} & \textcolor{red}{\eta_{24}} \\ \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{bmatrix} \\\Rightarrow\begin{bmatrix} \textcolor{red}{\eta_{12}} & \textcolor{red}{\eta_{22}} \\ \textcolor{red}{\eta_{13}} & \textcolor{red}{\eta_{23}} \\ \textcolor{red}{\eta_{14}} & \textcolor{red}{\eta_{24}} \\ \end{bmatrix} &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{bmatrix} .\end{aligned} \]

The same linear hypothesis can be represented in using the vectorized form of \(\boldsymbol{B}\), \(\boldsymbol{\beta}\)

\[ H_0: \mathbf{L}\boldsymbol{\beta} = \mathbf{c} \quad \textrm{vs} \quad H_1: \mathbf{L}\boldsymbol{\beta} \neq \mathbf{c} \]

where

\[ \begin{bmatrix} 0 & 0 & 0 & \textcolor{red}{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \textcolor{red}{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \textcolor{red}{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \textcolor{red}{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \textcolor{red}{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \textcolor{red}{1} \\ \end{bmatrix} \begin{bmatrix} \mu_{10} \\ \gamma_{12} \\ \gamma_{13} \\ \textcolor{red}{\eta_{12}} \\ \textcolor{red}{\eta_{13}} \\ \textcolor{red}{\eta_{14}} \\ \mu_{20} \\ \gamma_{22} \\ \gamma_{23} \\ \textcolor{red}{\eta_{22}} \\ \textcolor{red}{\eta_{23}} \\ \textcolor{red}{\eta_{24}} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{bmatrix} .\]

Let \(\mathbf{R}\) be the residual sum of squares and cross products (SSP) of the full model \[ \mathbf{R} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\hat{B}})' (\mathbf{Y} - \mathbf{X}\boldsymbol{\hat{B}}). \]

Defines \(\mathbf{H}\) as the hypothesis SSP matrix, \[ \begin{aligned} \mathbf{H} &= n(\hat{\Sigma}_0 - \hat{\Sigma})\\ &= (\mathbf{A}\boldsymbol{\hat{B}}\mathbf{M} - \mathbf{C})' [\mathbf{A} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{A}']^{-1} (\mathbf{A}\boldsymbol{\hat{B}}\mathbf{M} - \mathbf{C}), \end{aligned} \]

The statistic \[ \text{tr} (\mathbf{H}\mathbf{R}^{-1}) = \sum_{i = 1}^{s} \lambda_i \] is known as Hotteling-Lawley trace. The values \(\lambda_1 \geq \lambda_2 \geq \ldots \lambda_s\) are the nonzero eigen values of \(\mathbf{H}\mathbf{R}^{-1}\).

Berndt e Savin (1977) show that the same value is obtained as the result of a Wald test using the vectorized version of the components

\[ \text{tr} (\mathbf{H}\mathbf{R}^{-1}) = (\mathbf{L} \boldsymbol{\hat\beta} - \mathbf{c})' [\mathbf{L} ( (\mathbf{M}' \mathbf{R} \mathbf{M}) \otimes (\mathbf{X}'\mathbf{X})^{-1}) \mathbf{L}']^{-1} (\mathbf{L} \boldsymbol{\hat\beta} - \mathbf{c}). \]

Under \(H_0\), the statistic \[ n \text{tr} (\mathbf{H}\mathbf{R}^{-1}), \] has a limiting \(\chi^2\) distribution with \(vh\) degrees of freedom.

A test based on the likelihood ratio is written in terms of generalized variances \[ \begin{aligned} \Lambda &= \frac{\max_{H_0} L(\beta, \Sigma)}{\max L(\beta, \Sigma)} \\ &= \left(\frac{|\hat{\Sigma}_0|}{|\hat{\Sigma}|}\right)^{-n/2},\\ \end{aligned} \] and the Wilks’ statistic is \[ \Lambda^{2/n} = \frac{|\hat{\Sigma}|}{|\hat{\Sigma}_0|}. \]

Under \(H_0\), \(n\hat{\Sigma} \sim W_{r;n-k}\) independently of \(n(\hat{\Sigma}_0 - \hat{\Sigma}) \sim W_{r;h}\). The likelihood ratio test of \(H_0\) is equivalent to reject \(H_0\) for large values of the deviance \[ -2 \log \Lambda = -n \log \left( \frac{|n\hat{\Sigma}|}{ |n\hat{\Sigma} + n(\hat{\Sigma}_0 - \hat{\Sigma})|} \right). \]

Under \(H_0\), the above statistic has a limiting \(\chi^2\) distribution with \(vh\) degrees of freedom.

The four multivariate hypothesis tests

For the same hypothesis, there are four multivariate tests.

\[ \begin{aligned} \text{Wilk's lambda} &= \frac{|\mathbf{R}|}{|\mathbf{R} + \mathbf{H}|} = \prod_{i=1}^s \frac{1}{1+\lambda_i}\\ \text{Hotelling-Lawley trace} &= \text{tr}(\mathbf{H}\mathbf{R}^{-1}) = \sum_{i=1}^s \lambda_i\\ \text{Pillai's trace} &= \text{tr}(\mathbf{H}(\mathbf{H} + \mathbf{R})^{-1}) = \sum_{i=1}^s \frac{\lambda_i}{1+\lambda_i}\\ \text{Roy's greatest root} &= \max(\lambda_1,\ldots,\lambda_s) = \lambda_1 \end{aligned} \]

We did a small simulation study to access the limiting \(\chi^2\) and \(F\) approximation for each of this tests.

Recomendations

Canonical discriminant analysis.

Examples

Additional topics

References

Berndt, Ernst R., e N. Eugene Savin. 1977. “Conflict among criteria for testing hypotheses in the multivariate linear regression model”. Econometrica 45 (5). JSTOR: 1263. doi:10.2307/1914072.