Multivariate analysis of non-Gaussian data (McGLM)

Part II

Wagner H. Bonat Walmes M. Zeviani
wbonat@ufpr.br walmes@ufpr.br
LEG/DEST/UFPR LEG/DEST/UFPR

62a RBras & 17o SEAGRO
July 24–28, 2017
UFLA, Lavras/MG

General linear model

Multivariate analysis of non-Gaussian data

Outline

Flexible Generalized Linear Models

Variance/dispersion functions

Covariance Generalized Linear Models

Example 1: Gaussian linear mixed model

Example 2: exchangeable and unstructured models

Example 3: conditional autoregressive models

Example 4: genetic additive models

Multivariate Covariance Generalized Linear Models

Estimation and Inference

McGLM - Parametrization

Estimating functions

Fitting algorithm

Godambe information matrix and asymptotic distribution

Multivariate linear hypotheses tests

Computational implementation in \(\textsf{R}\)

Overview of the mcglm package.

library(devtools)

# From github
install_github("wbonat/mcglm")

# From CRAN
install.packages("mcglm")
library(mcglm)
## ----------------------------------------------------------------------
##   mcglm: Multivariate Covariance Generalized Linear Models
## 
##   For support, collaboration or bug report, visit: 
##     https://github.com/wbonat/mcglm
## 
##   mcglm version 0.4.0 (build on 2016-10-17) is now loaded.
## ----------------------------------------------------------------------
args(mcglm)
## function (linear_pred, matrix_pred, link, variance, covariance, 
##     offset, Ntrial, power_fixed, data, control_initial = "automatic", 
##     contrasts = NULL, control_algorithm = list()) 
## NULL

Linear covariance structures

Functions Description
mc_id() Identity matrix
mc_ns() Unstructured model
mc_dglm() Double generalized linear models.
mc_mixed() Linear mixed models (formula similar to lme4).
mc_ma() Moving average models of order p.
mc_rw() CAR models for times series.
mc_car() CAR models for space data.
mc_dist() Distance based models.
mc_twin() ACE, ADE, AE, and CE models for twin data.

Methods for mcglm objects

Functions Description
print() Simple printed display of model features.
summary() Standard regression output.
fitted() Fitted values for observed data.
residuals() Pearson, raw and standardized residuals.
coef() Coefficient estimates.
vcov() Variance-covariance matrix of coefficient estimates.
confint() Confidence intervals.
anova() Analysis of variance tables for fitted models.
manova() MANOVA-like test.
plot() Diagnostic plots of Pearson residuals and algorithm check.

Extra features for mcglm objects

Functions Description
gof() Measures of goodness-of-fit.
mc_sic() SIC for regression parameters.
mc_sic_covariance() SIC for dispersion parameters.
mc_bias_correct_std() Bias-corrected std.
mc_robust_std() Robust std.
mc_conditional_test() Conditional hypotheses tests.
mc_compute_rho() Compute autocorrelation estimates.
mc_initial_values() Initial values for mcglm.

Data analyses

Concluding remarks

Discussion

Extensions

Coming soon

References

Bates, Douglas, Martin Mächler, Ben Bolker, e Steve Walker. 2015. “Fitting linear mixed-effects models using lme4”. Journal of Statistical Software 67 (1): 1–48. doi:10.18637/jss.v067.i01.

Bonat, W. H. 2017a. “Modelling mixed types of outcomes in additive genetic models”. The International Journal of Biostatistics.

———. 2017b. “Multiple response variables regression models in r. the mcglm package”. Journal Statistical Software.

Bonat, W. H., e B. Jørgensen. 2016. “Multivariate covariance generalized linear models”. Journal of the Royal Statistical Society: Series C (Applied Statistics) 65: 649–75.

Bonat, W. H., e C. C. Kokonendji. 2017. “Flexible Tweedie regression models for continuous data”. Journal of Statistical Computation and Simulation 87 (11): 2138–52.

Bonat, W. H., e R. Peterle. 2017. “Flexible regression models for bounded data”. Arxiv.

Bonat, W. H., B. Jørgensen, C. C. Kokonendji, J. Hinde, e C. G. Demétrio. 2017. “Extended poisson-tweedie: Properties and regression models for count data”. Statistical Modelling.

Bonat, W. H., J. Olivero, M. Grande-Verga, M. A. Fárfan, e J. E. Fa. 2017. “Modelling the covariance structure in marginal multivariate count models”. Journal of Agricultural, Biological and Environmental Statistics, 1–19. doi:10.1007/s13253-017-0284-7.

Box, George Edward Pelham, e Gwilym M. Jenkins. 1994. Time series analysis: Forecasting and control. 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Cressie, N., e H. Huang. 1999. “Classes of nonseparable, spatio-temporal stationary covariance functions”. Journal of the American Statistical Association 94 (448): 1330–9.

Cressie, N., e C. K. Wikle. 2011. Statistics for Spatio-Temporal Data. Wiley series in probability and statistics. John Wiley & Sons, Inc., Hoboken, NJ.

Diggle, P. J., P. Heagerty, Kung-Yee Liang, e S. L. Zeger. 2002. Analysis of Longitudinal Data. Oxford statistical science series. Oxford.

Jørgensen, B., e S. J. Knudsen. 2004. “Parameter orthogonality and bias adjustment for estimating functions”. Scandinavian Journal of Statistics 31 (1): 93–114.

Liang, Kung-Yee, e S. L. Zeger. 1986. “Longitudinal data analysis using generalized linear models”. Biometrika 73 (1): 13–22.

Martinez-Beneito, M. A. 2013. “A general modelling framework for multivariate disease mapping”. Biometrika 100 (3): 539–53.

Pourahmadi, M. 2000. “Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix”. Biometrika 87 (2): 425–35.

Sorensen, D., e D. Gianola. 2007. Likelihood, bayesian, and mCMC methods in quantitative genetics. Statistics for biology and health. Springer New York.

Thank you!

See you in Curitiba/PR for the 63a RBras!
Save the date: May 23 – 25, 2018.

Wagner Hugo Bonat
wbonat@ufpr.br
LEG/UFPR

Walmes Marques Zeviani
walmes@ufpr.br
LEG/UFPR